Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo D'Amico is active.

Publication


Featured researches published by Massimo D'Amico.


Blood | 2011

Chemotherapy resistance in acute lymphoblastic leukemia requires hERG1 channels and is overcome by hERG1 blockers

Serena Pillozzi; Marika Masselli; Emanuele De Lorenzo; Benedetta Accordi; Emanuele Cilia; Olivia Crociani; Amedeo Amedei; Marinella Veltroni; Massimo D'Amico; Giuseppe Basso; Andrea Becchetti; Dario Campana; Annarosa Arcangeli

Bone marrow mesenchymal cells (MSCs) can protect leukemic cells from chemotherapy, thus increasing their survival rate. We studied the potential molecular mechanisms underlying this effect in acute lymphoblastic leukemia (ALL) cells. Coculture of ALL cells with MSCs induced on the lymphoblast plasma membrane the expression of a signaling complex formed by hERG1 (human ether-à-go-go-related gene 1) channels, the β(1)-integrin subunit, and the chemokine receptor CXC chemokine receptor-4. The assembly of such a protein complex activated both the extracellular signal-related kinase 1/2 (ERK1/2) and the phosphoinositide 3-kinase (PI3K)/Akt prosurvival signaling pathways. At the same time, ALL cells became markedly resistant to chemotherapy-induced apoptosis. hERG1 channel function appeared to be important for both the initiation of prosurvival signals and the development of drug resistance, because specific channel blockers decreased the protective effect of MSCs. NOD/SCID mice engrafted with ALL cells and treated with channel blockers showed reduced leukemic infiltration and had higher survival rates. Moreover, hERG1 blockade enhanced the therapeutic effect produced by corticosteroids. Our findings provide a rationale for clinical testing of hERG1 blockers in the context of antileukemic therapy for patients with ALL.


Stem Cells | 2006

Cell Renewing in Neuroblastoma: Electrophysiological and Immunocytochemical Characterization of Stem Cells and Derivatives

Tiziana Biagiotti; Massimo D'Amico; Ilaria Marzi; Paola Di Gennaro; Annarosa Arcangeli; Enzo Wanke; Massimo Olivotto

We explored the stem cell compartment of the SH‐SY5Y neuroblastoma (NB) clone and its development by a novel approach, integrating clonal and immunocytochemical investigations with patch‐clamp measurements of ion currents simultaneously expressed on single cells. The currents selected were the triad IHERG, IKDR, INa, normally expressed at varying mutual ratios during development of neural crest stem cells, from which NB derives upon neoplastic transformation. These ratios could be used as electrophysiological clusters of differentiation (ECDs), identifying otherwise indistinguishable stages in maturation. Subcloning procedures allowed the isolation of highly clonogenic substrate‐adherent (S‐type) cells that proved to be p75‐ and nestinpositive and were characterized by a nude electrophysiological profile (ECDS0). These cells expressed negligible levels of the triad and manifested the capacity of generating the two following lineages: first, a terminally differentiating, smooth muscular lineage, positive for calponin and smooth muscle actin, whose electrophysiological profile is characterized by a progressive diminution of IHERG, the increase of IKDR and INa, and the acquisition of IKIR (ECDS2); second, a neuronal abortive pathway (NF‐68 positive), characterized by a variable expression of IHERG and IKDR and a low expression of INa (ECDNS). This population manifested a vigorous amplification, monopolizing the stem cell compartment at the expense of the smooth muscular lineage to such an extent that neuronal‐like (N‐type) cells must be continuously removed if the latter are to develop.


Cancer Research | 2009

Mitochondrial Expression and Functional Activity of Breast Cancer Resistance Protein in Different Multiple Drug-Resistant Cell Lines

Michela Solazzo; Ornella Fantappiè; Massimo D'Amico; Chiara Sassoli; Alessia Tani; Greta Cipriani; Costanza Bogani; Lucia Formigli; Roberto Mazzanti

The multidrug resistance (MDR) phenotype is characterized by the overexpression of a few transport proteins at the plasma membrane level, one of which is the breast cancer resistance protein (BCRP). These proteins are expressed in excretory organs, in the placenta and blood-brain barrier, and are involved in the transport of drugs and endogenous compounds. Because some of these proteins are expressed in the mitochondria, this study was designed to determine whether BCRP is expressed at a mitochondrial level and to investigate its function in various MDR and parental drug-sensitive cell lines. By using Western blot analysis, immunofluorescence confocal and electron microscopy, flow cytometry analysis, and the BCRP (ABCG-2) small interfering RNA, these experiments showed that BCRP is expressed in the mitochondrial cristae, in which it is functionally active. Mitoxantrone accumulation was significantly reduced in mitochondria and in cells that overexpress BCRP, in comparison to parental drug-sensitive cells. The specific inhibitor of BCRP, fumitremorgin c, increased the accumulation of mitoxantrone significantly in comparison with basal conditions in both whole cells and in mitochondria of BCRP-overexpressing cell lines. In conclusion, this study shows that BCRP is overexpressed and functionally active in the mitochondria of MDR-positive cancer cell lines. However, its presence in the mitochondria of parental drug-sensitive cells suggests that BCRP can be involved in the physiology of cancer cells.


Scientific Reports | 2013

hERG1 channels modulate integrin signaling to trigger angiogenesis and tumor progression in colorectal cancer

Olivia Crociani; Francesca Zanieri; Serena Pillozzi; Elena Lastraioli; Matteo Stefanini; Antonella Fiore; Angelo Fortunato; Massimo D'Amico; Marika Masselli; Emanuele De Lorenzo; Luca Gasparoli; Martina Chiu; Ovidio Bussolati; Andrea Becchetti; Annarosa Arcangeli

Angiogenesis is a potential target for cancer therapy. We identified a novel signaling pathway that sustains angiogenesis and progression in colorectal cancer (CRC). This pathway is triggered by β1 integrin-mediated adhesion and leads to VEGF-A secretion. The effect is modulated by the human ether-à-go-go related gene 1 (hERG1) K+ channel. hERG1 recruits and activates PI3K and Akt. This in turn increases the Hypoxia Inducible Factor (HIF)-dependent transcription of VEGF-A and other tumour progression genes. This signaling pathway has novel features in that the integrin- and hERG1-dependent activation of HIF (i) is triggered in normoxia, especially after CRC cells have experienced a hypoxic stage, (ii) involves NF-kB and (iii) is counteracted by an active p53. Blocking hERG1 switches this pathway off also in vivo, by inhibiting cell growth, angiogenesis and metastatic spread. This suggests that non-cardiotoxic anti-hERG1 drugs might be a fruitful therapeutic strategy to prevent the failure of anti-VEGF therapy.


Cell Cycle | 2013

The involvement of a Nanog, Klf4 and c-Myc transcriptional circuitry in the intertwining between neoplastic progression and reprogramming

Ilaria Marzi; Maria Grazia Cipolleschi; Massimo D'Amico; Theodora Stivarou; Elisabetta Rovida; Maria Cristina Vinci; Silvia Pandolfi; Persio Dello Sbarba; Barbara Stecca; Massimo Olivotto

One undisputed milestone of traditional oncology is neoplastic progression, which consists of a progressive selection of dedifferentiated cells driven by a chance sequence of genetic mutations. Recently it has been demonstrated that the overexpression of well-defined transcription factors reprograms somatic cells to the pluripotent stem status. The demonstration raises crucial questions as to whether and to what extent this reprogramming contributes to tumorigenesis, and whether the epigenetic changes involved in it are reversible. Here, we show for the first time that a tumor produced in vivo by a chemical carcinogen is the product of the interaction between neoplastic progression and reprogramming. The experimental model employed the prototype of ascites tumors, the Yoshida AH130 hepatoma and other neoplasias, including human melanoma. AH130 hepatoma was started in the liver by the carcinogen o-aminoazotoluene. This compound binds to and abolishes the p53 protein, producing a genomic instability that promotes both the neoplastic progression and the hepatoma reprogramming. Eventually this tumor contained 100% CD133+ elements and pO2-dependent percentages of the three embryonic transcription factors Nanog, Klf4 and c-Myc. Once transferred into aerobic cultures, the minor cellular fraction expressing this triad generates various types of adherent cells, which are progressively substituted by non-tumorigenic elements committed to fibromuscular, neuronal and glial differentiation. This reprogramming appears to be accomplished stepwise, with the assembly of the triad into a sophisticated transcriptional, oxygen-dependent circuitry, in which Nanog and Klf4 antagonistically regulate c-Myc, and hence, cell hypoxia survival and cell cycle activation.


Cell Cycle | 2014

Hypoxia-resistant profile implies vulnerability of cancer stem cells to physiological agents, which suggests new therapeutic targets

Maria Grazia Cipolleschi; Ilaria Marzi; Roberta Santini; David Fredducci; Maria Cristina Vinci; Massimo D'Amico; Elisabetta Rovida; Theodora Stivarou; Eugenio Torre; Persio Dello Sbarba; Barbara Stecca; Massimo Olivotto

We have previously shown that peculiar metabolic features of cell adaptation and survival in hypoxia imply growth restriction points that are typical of embryonic stem cells and disappear with differentiation. Here we provide evidence that such restrictions can be exploited as specific antiblastic targets by physiological factors such as pyruvate, tetrahydrofolate, and glutamine. These metabolites act as powerful cytotoxic agents on cancer stem cells (CSCs) when supplied at doses that perturb the biochemical network, sustaining the resumption of aerobic growth after the hypoxic dormant state. Experiments were performed in vivo and in vitro using CSCs obtained from various anaplastic tumors: human melanoma, leukemia, and rat hepatoma cells. Pretreatment of melanoma CSCs with pyruvate significantly reduces their self-renewal in vitro and tumorigenicity in vivo. The metabolic network underlying the cytotoxic effect of the physiological factors was thoroughly defined, principally using AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem stage. This network, based on a tight integration of aerobic glycolysis, cellular redox state, and folate metabolism, is centered on the cellular NADP/NADPH ratio that controls the redox pathway of folate utilization in purine synthesis. On the whole, this study indicates that pyruvate, FH4, and glutamine display anticancer activity, because CSCs are committed to survive and maintain their stemness in hypoxia. When CSC need to differentiate and proliferate, they shift from anaerobic to aerobic status, and the few mitochondria available makes them susceptible to the injury of the above physiological factors. This vulnerability might be exploited for novel therapeutic treatments.


International Journal of Cancer | 2014

COUP-TFII in pancreatic adenocarcinoma: clinical implication for patient survival and tumor progression.

S. Polvani; M. Tarocchi; S. Tempesti; Tommaso Mello; E. Ceni; F. Buccoliero; Massimo D'Amico; Vieri Boddi; Marco Farsi; Silvia Nesi; Gabriella Nesi; Stefano Milani; Andrea Galli

Despite the accumulating knowledge of alterations in pancreatic cancer molecular pathways, no substantial improvements in the clinical prognosis have been made and this malignancy continues to be a leading cause of cancer death in the Western World. The orphan nuclear receptor COUP‐TFII is a regulator of a wide range of biological processes and it may exert a pro‐oncogenic role in cancer cells; interestingly, indirect evidences suggest that the receptor could be involved in pancreatic cancer. The aim of this study was to evaluate the expression of COUP‐TFII in human pancreatic tumors and to unveil its role in the regulation of pancreatic tumor growth. We evaluated COUP‐TFII expression by immunohistochemistry on primary samples. We analyzed the effect of the nuclear receptor silencing in human pancreatic cancer cells by means of shRNA expressing cell lines. We finally confirmed the in vitro results by in vivo experiments on nude mice. COUP‐TFII is expressed in 69% of tested primary samples and correlates with the N1 and M1 status and clinical stage; Kaplan–Meier and Cox regression analysis show that it may be an independent prognostic factor of worst outcome. In vitro silencing of COUP‐TFII reduces the cell growth and invasiveness and it strongly inhibits angiogenesis, an effect mediated by the regulation of VEGF‐C. In nude mice, COUP‐TFII silencing reduces tumor growth by 40%. Our results suggest that COUP‐TFII might be an important regulator of the behavior of pancreatic adenocarcinoma, thus representing a possible new target for pancreatic cancer therapy.


Bioelectrochemistry | 2010

A metal-supported biomimetic micromembrane allowing the recording of single-channel activity and of impedance spectra of membrane proteins

Lucia Becucci; Massimo D'Amico; Salvatore Daniele; Massimo Olivotto; Andrea Pozzi; Rolando Guidelli

A novel tethered bilayer lipid micromembrane (tBLmicroM) was prepared and characterized. It consists of a mercury cap electrodeposited on a platinum microelectrode, about 20 microm in diameter. The micromembrane was prepared by tethering to the mercury cap a thiolipid monolayer and by then self-assembling a lipid monolayer on top of it. The thiolipid consisted of a disulfidated tetraoxyethylene hydrophilic spacer covalently linked to two phytanyl chains. Upon incorporating OmpF porin in the tBLmicroM, its single-channel activity was recorded by the patch-clamp technique, and its particular features described. An electrochemical impedance spectrum of the tBLmicroM incorporating OmpF porin is also reported. To the best of our knowledge, this tBLmicroM is the first metal-supported biomimetic micromembrane capable of incorporating non-engineered channel proteins in a functionally active state from their detergent solutions, and of allowing the recording of single-channel activity and of impedance spectra of these proteins via ion translocation into the hydrophilic spacer. The limited spaciousness of the spacer prevents a statistical analysis based on current-amplitude or blockage-time histograms. Nonetheless, the robustness, stability, ease of preparation and disposability of the present tBLmicroM may open the way to the realization of a channel-protein microarray platform allowing a high throughput drug screening.


Science Signaling | 2017

The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression

Andrea Becchetti; Silvia Crescioli; Francesca Zanieri; Giulia Petroni; Raffaella Mercatelli; Stefano Coppola; Luca Gasparoli; Massimo D'Amico; Serena Pillozzi; Olivia Crociani; Matteo Stefanini; Antonella Fiore; Laura Carraresi; Virginia Morello; Sagar Manoli; Maria Felice Brizzi; Davide Ricci; Mauro Rinaldi; Alessio Masi; Thomas Schmidt; Franco Quercioli; Paola Defilippi; Annarosa Arcangeli

Whether hERG1 potassium channels promote proliferation or metastasis in breast cancer cells depends on channel conformation. Channeling proliferation or metastasis The hERG1 potassium channel is best known for its role in repolarizing excitable cells such as cardiomyocytes, but the abundance of this cardiac channel is aberrantly high in cancer cells. Becchetti et al. investigated the interaction of hERG1 with the β1 integrin subunit, a member of a family of adhesion molecules. Forms of hERG1 with mutations that fixed the channel in the open conformation more weakly interacted with β1 integrin in cells and enhanced proliferation when expressed in breast cancer cells injected into mice. However, K+ flow through open hERG1 channels enhanced the activation of FAK downstream of β1 integrin and promoted metastasis in breast cancer cells injected into mice. Thus, whether hERG1 promotes proliferation or metastasis in cancer cells depends on the conformation of the channel and suggests that hERG1 inhibitors that are tailored to the channel conformation could be used to prevent different aspects of tumor progression. Ion channels regulate cell proliferation, differentiation, and migration in normal and neoplastic cells through cell-cell and cell–extracellular matrix (ECM) transmembrane receptors called integrins. K+ flux through the human ether-à-go-go–related gene 1 (hERG1) channel shapes action potential firing in excitable cells such as cardiomyocytes. Its abundance is often aberrantly high in tumors, where it modulates integrin-mediated signaling. We found that hERG1 interacted with the β1 integrin subunit at the plasma membrane of human cancer cells. This interaction was not detected in cardiomyocytes because of the presence of the hERG1 auxiliary subunit KCNE1 (potassium voltage-gated channel subfamily E regulatory subunit 1), which blocked the β1 integrin–hERG1 interaction. Although open hERG1 channels did not interact as strongly with β1 integrins as did closed channels, current flow through hERG1 channels was necessary to activate the integrin-dependent phosphorylation of Tyr397 in focal adhesion kinase (FAK) in both normal and cancer cells. In immunodeficient mice, proliferation was inhibited in breast cancer cells expressing forms of hERG1 with impaired K+ flow, whereas metastasis of breast cancer cells was reduced when the hERG1/β1 integrin interaction was disrupted. We conclude that the interaction of β1 integrins with hERG1 channels in cancer cells stimulated distinct signaling pathways that depended on the conformational state of hERG1 and affected different aspects of tumor progression.


Journal of Cellular and Molecular Medicine | 2015

HDAC-inhibitor (S)-8 disrupts HDAC6-PP1 complex prompting A375 melanoma cell growth arrest and apoptosis.

Manjola Balliu; Luca Guandalini; Maria Novella Romanelli; Massimo D'Amico; Francesco Paoletti

Histone deacetylase inhibitors (HDACi) are agents capable of inducing growth arrest and apoptosis in different tumour cell types. Previously, we reported a series of novel HDACi obtained by hybridizing SAHA or oxamflatin with 1,4‐benzodiazepines. Some of these hybrids proved effective against haematological and solid cancer cells and, above all, compound (S)‐8 has emerged for its activities in various biological systems. Here, we describe the effectiveness of (S)‐8 against highly metastatic human A375 melanoma cells by using normal PIG1 melanocytes as control. (S)‐8 prompted: acetylation of histones H3/H4 and α‐tubulin; G0/G1 and G2/M cell cycle arrest by rising p21 and hypophos‐phorylated RB levels; apoptosis involving the cleavage of PARP and caspase 9, BAD protein augmentation and cytochrome c release; decrease in cell motility, invasiveness and pro‐angiogenic potential as shown by results of wound‐healing assay, down‐regulation of MMP‐2 and VEGF‐A/VEGF‐R2, besides TIMP‐1/TIMP‐2 up‐regulation; and also intracellular accumulation of melanin and neutral lipids. The pan‐caspase inhibitor Z‐VAD‐fmk, but not the antioxidant N‐acetyl‐cysteine, contrasted these events. Mechanistically, (S)‐8 allows the disruption of cytoplasmic HDAC6‐protein phosphatase 1 (PP1) complex in A375 cells thus releasing the active PP1 that dephosphorylates AKT and blocks its downstream pro‐survival signalling. This view is consistent with results obtained by: inhibiting PP1 with Calyculin A; using PPP1R2‐transfected cells with impaired PP1 activity; monitoring drug‐induced HDAC6‐PP1 complex re‐shuffling; and, abrogating HDAC6 expression with specific siRNA. Altogether, (S)‐8 proved very effective against melanoma A375 cells, but not normal melanocytes, and safe to normal mice thus offering attractive clinical prospects for treating this aggressive malignancy.

Collaboration


Dive into the Massimo D'Amico's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Becchetti

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge