Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Maffei is active.

Publication


Featured researches published by Massimo Maffei.


PLOS Genetics | 2010

A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species Myzus persicae (Green Peach Aphid)

Jorunn I. B. Bos; David C. Prince; Marco Pitino; Massimo Maffei; Joe Win; Saskia A. Hogenhout

Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)–mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes.


PLOS ONE | 2011

Silencing of aphid genes by dsRNA feeding from plants.

Marco Pitino; Alexander D. Coleman; Massimo Maffei; Christopher J. Ridout; Saskia A. Hogenhout

Background RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs. Methodology/Principal Findings In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions. Conclusions/Significance Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control.


Plant Physiology | 2006

Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. III. Membrane Depolarization and Involvement of Hydrogen Peroxide

Massimo Maffei; Axel Mithöfer; Gen-ichiro Arimura; Hannes Uchtenhagen; Simone Bossi; Cinzia M. Bertea; Laura Starvaggi Cucuzza; Mara Novero; Veronica Volpe; Stefano Quadro; Wilhelm Boland

In response to herbivore (Spodoptera littoralis) attack, lima bean (Phaseolus lunatus) leaves produced hydrogen peroxide (H2O2) in concentrations that were higher when compared to mechanically damaged (MD) leaves. Cellular and subcellular localization analyses revealed that H2O2 was mainly localized in MD and herbivore-wounded (HW) zones and spread throughout the veins and tissues. Preferentially, H2O2 was found in cell walls of spongy and mesophyll cells facing intercellular spaces, even though confocal laser scanning microscopy analyses also revealed the presence of H2O2 in mitochondria/peroxisomes. Increased gene and enzyme activations of superoxide dismutase after HW were in agreement with confocal laser scanning microscopy data. After MD, additional application of H2O2 prompted a transient transmembrane potential (Vm) depolarization, with a Vm depolarization rate that was higher when compared to HW leaves. In transgenic soybean (Glycine max) suspension cells expressing the Ca2+-sensing aequorin system, increasing amounts of added H2O2 correlated with a higher cytosolic calcium ([Ca2+]cyt) concentration. In MD and HW leaves, H2O2 also triggered the increase of [Ca2+]cyt, but MD-elicited [Ca2+]cyt increase was more pronounced when compared to HW leaves after addition of exogenous H2O2. The results clearly indicate that Vm depolarization caused by HW makes the membrane potential more positive and reduces the ability of lima bean leaves to react to signaling molecules.


Plant Physiology | 2004

Effects of Feeding Spodoptera littoralis on Lima Bean Leaves : I. Membrane Potentials, Intracellular Calcium Variations, Oral Secretions, and Regurgitate Components

Massimo Maffei; Simone Bossi; Dieter Spiteller; Axel Mithöfer; Wilhelm Boland

Membrane potentials (Vm) and intracellular calcium variations were studied in Lima bean (Phaseolus lunatus) leaves when the Mediterranean climbing cutworm (Spodoptera littoralis) was attacking the plants. In addition to the effect of the feeding insect the impact of several N-acyl Glns (volicitin, N-palmitoyl-Gln, N-linolenoyl-Gln) from the larval oral secretion was studied. The results showed that the early events upon herbivore attack were: a) a strong Vm depolarization at the bite zone and an isotropic wave of Vm depolarization spreading throughout the entire attacked leaf; b) a Vm depolarization observed for the regurgitant but not with volicitin {N-(17-hydroxy-linolenoyl)-Gln} alone; c) an enhanced influx of Ca2+ at the very edge of the bite, which is halved, if the Ca2+ channel blocker Verapamil is used. Furthermore, the dose-dependence effects of N-acyl Gln conjugates-triggered influx of Ca2+ studied in transgenic aequorin-expressing soybean (Glycine max) cells, showed: a) a concentration-dependent influx of Ca2+; b) a configuration-independent effect concerning the stereochemistry of the amino acid moiety; c) a slightly reduced influx of Ca2+ after modification of the fatty acid backbone by functionalization with oxygen and; d) a comparable effect with the detergent SDS. Finally, the herbivore wounding causes a response in the plant cells that cannot be mimicked by mechanical wounding. The involvement of Ca2+ in signaling after herbivore wounding is discussed.


Natural Product Reports | 2011

Plant volatiles: Production, function and pharmacology

Massimo Maffei; Juerg Gertsch; Giovanni Appendino

Plant volatiles typically occur as a complex mixture of low-molecular weight lipophilic compounds derived from different biosynthetic pathways, and are seemingly produced as part of a defense strategy against biotic and abiotic stress, as well as contributing to various physiological functions of the producer organism. The biochemistry and molecular biology of plant volatiles is complex, and involves the interplay of several biochemical pathways and hundreds of genes. All plants are able to store and emit volatile organic compounds (VOCs), but the process shows remarkable genotypic variation and phenotypic plasticity. From a physiological standpoint, plant volatiles are involved in three critical processes, namely plant–plant interaction, the signaling between symbiotic organisms, and the attraction of pollinating insects. Their role in these ‘‘housekeeping’’ activities underlies agricultural applications that range from the search for sustainable methods for pest control to the production of flavors and fragrances. On the other hand, there is also growing evidence that VOCs are endowed with a range of biological activities in mammals, and that they represent a substantially under-exploited and still largely untapped source of novel drugs and drug leads. This review summarizes recent major developments in the study of biosynthesis, ecological functions and medicinal applications of plant VOCs.


Biochemical Systematics and Ecology | 1996

Chemotaxonomic Significance of Leaf Wax Alkanes in the Gramineae

Massimo Maffei

Abstract Leaf wax alkanes were determined in several species of the grass family (Gramineae) and used as chemotaxonomic characters. Leaf wax alkanes were extracted with hexane and determined by GC-MS on a data set including 93 species belonging to five subfamilies: Bambusoideae, Pooideae, Arundinoideae, Chloridoideae and Panicoideae. The large data set on the Pooideae allowed consideration of the chemotaxonomic significance of leaf wax alkanes in the tribal classification of this family. The data obtained were statistically processed by using multivariate methods including cluster analysis, principal component analysis and discriminant analysis. The partitions provided by the statistical analyses presented many interesting systematic correlations with morphological data both at subfamilial and tribal level. The results of this study confirm the usefulness of leaf wax alkanes as chemotaxonomic markers.


Plant Physiology | 2008

Effects of Feeding Spodoptera littoralis on Lima Bean Leaves: IV. Diurnal and Nocturnal Damage Differentially Initiate Plant Volatile Emission

Gen-ichiro Arimura; Sabrina Köpke; Maritta Kunert; Veronica Volpe; Anja David; Peter Brand; Paulina Dabrowska; Massimo Maffei; Wilhelm Boland

Continuous mechanical damage initiates the rhythmic emission of volatiles in lima bean (Phaseolus lunatus) leaves; the emission resembles that induced by herbivore damage. The effect of diurnal versus nocturnal damage on the initiation of plant defense responses was investigated using MecWorm, a robotic device designed to reproduce tissue damage caused by herbivore attack. Lima bean leaves that were damaged by MecWorm during the photophase emitted maximal levels of β-ocimene and (Z)-3-hexenyl acetate in the late photophase. Leaves damaged during the dark phase responded with the nocturnal emission of (Z)-3-hexenyl acetate, but with only low amounts of β-ocimene; this emission was followed by an emission burst directly after the onset of light. In the presence of 13CO2, this light-dependent synthesis of β-ocimene resulted in incorporation of 75% to 85% of 13C, demonstrating that biosynthesis of β-ocimene is almost exclusively fueled by the photosynthetic fixation of CO2 along the plastidial 2-C-methyl-d-erythritol 4-P pathway. Jasmonic acid (JA) accumulated locally in direct response to the damage and led to immediate up-regulation of the P. lunatus β-ocimene synthase gene (PlOS) independent of the phase, that is, light or dark. Nocturnal damage caused significantly higher concentrations of JA (approximately 2–3 times) along with enhanced expression levels of PlOS. Transgenic Arabidopsis thaliana transformed with PlOS promoter∷β-glucuronidase fusion constructs confirmed expression of the enzyme at the wounded sites. In summary, damage-dependent JA levels directly control the expression level of PlOS, regardless of light or dark conditions, and photosynthesis is the major source for the early precursors of the 2-C-methyl-d-erythritol 4-P pathway.


Planta | 2007

Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling

Gen-ichiro Arimura; Stefan Garms; Massimo Maffei; Simone Bossi; Birgit Schulze; Margit Leitner; Axel Mithöfer; Wilhelm Boland

Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a β-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11–homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-d-xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids.


International Journal of Molecular Sciences | 2011

Recent Advances in Plant Early Signaling in Response to Herbivory

Gen-ichiro Arimura; Rika Ozawa; Massimo Maffei

Plants are frequently attacked by herbivores and pathogens and therefore have acquired constitutive and induced defenses during the course of their evolution. Here we review recent progress in the study of the early signal transduction pathways in host plants in response to herbivory. The sophisticated signaling network for plant defense responses is elicited and driven by both herbivore-induced factors (e.g., elicitors, effectors, and wounding) and plant signaling (e.g., phytohormone and plant volatiles) in response to arthropod factors. We describe significant findings, illuminating the scenario by providing broad insights into plant signaling involved in several arthropod-host interactions.


Frontiers in Plant Science | 2015

Chemical diversity of microbial volatiles and their potential for plant growth and productivity

Chidananda Nagamangala Kanchiswamy; Mickael Malnoy; Massimo Maffei

Microbial volatile organic compounds (MVOCs) are produced by a wide array of microorganisms ranging from bacteria to fungi. A growing body of evidence indicates that MVOCs are ecofriendly and can be exploited as a cost-effective sustainable strategy for use in agricultural practice as agents that enhance plant growth, productivity, and disease resistance. As naturally occurring chemicals, MVOCs have potential as possible alternatives to harmful pesticides, fungicides, and bactericides as well as genetic modification. Recent studies performed under open field conditions demonstrate that efficiently adopting MVOCs may contribute to sustainable crop protection and production. We review here the chemical diversity of MVOCs by describing microbial–plants and microbial–microbial interactions. Furthermore, we discuss MVOCs role in inducing phenotypic plant responses and their potential physiological effects on crops. Finally, we analyze potential and actual limitations for MVOC use and deployment in field conditions as a sustainable strategy for improving productivity and reducing pesticide use.

Collaboration


Dive into the Massimo Maffei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gen-ichiro Arimura

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge