Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Negrini is active.

Publication


Featured researches published by Massimo Negrini.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia

George A. Calin; Calin Dan Dumitru; Masayoshi Shimizu; Roberta Bichi; Simona Zupo; Evan Noch; Hansjuerg Aldler; Sashi Rattan; Michael J. Keating; Kanti R. Rai; Laura Z. Rassenti; Thomas J. Kipps; Massimo Negrini; Florencia Bullrich; Carlo M. Croce

Micro-RNAs (miR genes) are a large family of highly conserved noncoding genes thought to be involved in temporal and tissue-specific gene regulation. MiRs are transcribed as short hairpin precursors (≈70 nt) and are processed into active 21- to 22-nt RNAs by Dicer, a ribonuclease that recognizes target mRNAs via base-pairing interactions. Here we show that miR15 and miR16 are located at chromosome 13q14, a region deleted in more than half of B cell chronic lymphocytic leukemias (B-CLL). Detailed deletion and expression analysis shows that miR15 and miR16 are located within a 30-kb region of loss in CLL, and that both genes are deleted or down-regulated in the majority (≈68%) of CLL cases.


Cancer Research | 2005

MicroRNA Gene Expression Deregulation in Human Breast Cancer

Marilena V. Iorio; Manuela Ferracin; Chang Gong Liu; Angelo Veronese; Riccardo Spizzo; Silvia Sabbioni; Eros Magri; Massimo Pedriali; Muller Fabbri; Manuela Campiglio; Sylvie Ménard; Juan P. Palazzo; Anne L. Rosenberg; Piero Musiani; Stefano Volinia; Italo Nenci; George A. Calin; Patrizia Querzoli; Massimo Negrini; Carlo M. Croce

MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Their aberrant expression may be involved in human diseases, including cancer. Indeed, miRNA aberrant expression has been previously found in human chronic lymphocytic leukemias, where miRNA signatures were associated with specific clinicobiological features. Here, we show that, compared with normal breast tissue, miRNAs are also aberrantly expressed in human breast cancer. The overall miRNA expression could clearly separate normal versus cancer tissues, with the most significantly deregulated miRNAs being mir-125b, mir-145, mir-21, and mir-155. Results were confirmed by microarray and Northern blot analyses. We could identify miRNAs whose expression was correlated with specific breast cancer biopathologic features, such as estrogen and progesterone receptor expression, tumor stage, vascular invasion, or proliferation index.


Molecular and Cellular Biology | 2007

A MicroRNA Signature of Hypoxia

Ritu Kulshreshtha; Manuela Ferracin; Sylwia E. Wojcik; Ramiro Garzon; Hansjuerg Alder; Francisco J. Agosto-Perez; Ramana V. Davuluri; Chang Gong Liu; Carlo M. Croce; Massimo Negrini; George A. Calin; Mircea Ivan

ABSTRACT Recent research has identified critical roles for microRNAs in a large number of cellular processes, including tumorigenic transformation. While significant progress has been made towards understanding the mechanisms of gene regulation by microRNAs, much less is known about factors affecting the expression of these noncoding transcripts. Here, we demonstrate for the first time a functional link between hypoxia, a well-documented tumor microenvironment factor, and microRNA expression. Microarray-based expression profiles revealed that a specific spectrum of microRNAs (including miR-23, -24, -26, -27, -103, -107, -181, -210, and -213) is induced in response to low oxygen, at least some via a hypoxia-inducible-factor-dependent mechanism. Select members of this group (miR-26, -107, and -210) decrease proapoptotic signaling in a hypoxic environment, suggesting an impact of these transcripts on tumor formation. Interestingly, the vast majority of hypoxia-induced microRNAs are also overexpressed in a variety of human tumors.


Cancer Cell | 2008

E2F1-Regulated MicroRNAs Impair TGFβ-Dependent Cell-Cycle Arrest and Apoptosis in Gastric Cancer

Fabio Petrocca; Rosa Visone; Mariadele Rapazzotti Onelli; Manisha H. Shah; Milena S. Nicoloso; Ivana De Martino; Dimitrios Iliopoulos; Emanuela Pilozzi; Chang Gong Liu; Massimo Negrini; Luigi Cavazzini; Stefano Volinia; Hansjuerg Alder; Luigi P. Ruco; Gustavo Baldassarre; Carlo M. Croce; Andrea Vecchione

Deregulation of E2F1 activity and resistance to TGFbeta are hallmarks of gastric cancer. MicroRNAs (miRNAs) are small noncoding RNAs frequently misregulated in human malignancies. Here we provide evidence that the miR-106b-25 cluster, upregulated in a subset of human gastric tumors, is activated by E2F1 in parallel with its host gene, Mcm7. In turn, miR-106b and miR-93 regulate E2F1 expression, establishing a miRNA-directed negative feedback loop. Furthermore, upregulation of these miRNAs impairs the TGFbeta tumor suppressor pathway, interfering with the expression of CDKN1A (p21(Waf1/Cip1)) and BCL2L11 (Bim). Together, these results suggest that the miR-106b-25 cluster is involved in E2F1 posttranscriptional regulation and may play a key role in the development of TGFbeta resistance in gastric cancer.


Cancer Research | 2007

Cyclin G1 Is a Target of miR-122a, a MicroRNA Frequently Down-regulated in Human Hepatocellular Carcinoma

Laura Gramantieri; Manuela Ferracin; Francesca Fornari; Angelo Veronese; Silvia Sabbioni; Chang Gong Liu; George A. Calin; Catia Giovannini; Eros Ferrazzi; Gian Luca Grazi; Carlo M. Croce; Luigi Bolondi; Massimo Negrini

We investigated the role of microRNAs (miRNAs) in the pathogenesis of human hepatocellular carcinoma (HCC). A genome-wide miRNA microarray was used to identify differentially expressed miRNAs in HCCs arisen on cirrhotic livers. Thirty-five miRNAs were identified. Several of these miRNAs were previously found deregulated in other human cancers, such as members of the let-7 family, mir-221, and mir-145. In addition, the hepato-specific miR-122a was found down-regulated in approximately 70% of HCCs and in all HCC-derived cell lines. Microarray data for let-7a, mir-221, and mir-122a were validated by Northern blot and real-time PCR analysis. Understanding the contribution of deregulated miRNAs to cancer requires the identification of gene targets. Here, we show that miR-122a can modulate cyclin G1 expression in HCC-derived cell lines and an inverse correlation between miR-122a and cyclin G1 expression exists in primary liver carcinomas. These results indicate that cyclin G1 is a target of miR-122a and expand our knowledge of the molecular alterations involved in HCC pathogenesis and of the role of miRNAs in human cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2008

MiR-15a and miR-16-1 cluster functions in human leukemia

George A. Calin; Amelia Cimmino; Muller Fabbri; Manuela Ferracin; Sylwia E. Wojcik; Masayoshi Shimizu; Cristian Taccioli; Nicola Zanesi; Ramiro Garzon; Rami I. Aqeilan; Hansjuerg Alder; Stefano Volinia; Laura Z. Rassenti; Xiuping Liu; Chang Gong Liu; Thomas J. Kipps; Massimo Negrini; Carlo M. Croce

MicroRNAs (miRNAs) are short noncoding RNAs regulating gene expression that play roles in human diseases, including cancer. Each miRNA is predicted to regulate hundreds of transcripts, but only few have experimental validation. In chronic lymphocytic leukemia (CLL), the most common adult human leukemia, miR-15a and miR-16-1 are lost or down-regulated in the majority of cases. After our previous work indicating a tumor suppressor function of miR-15a/16-1 by targeting the BCL2 oncogene, here, we produced a high-throughput profiling of genes modulated by miR-15a/16-1 in a leukemic cell line model (MEG-01) and in primary CLL samples. By combining experimental and bioinformatics data, we identified a miR-15a/16-1-gene signature in leukemic cells. Among the components of the miR-15a/16-1 signature, we observed a statistically significant enrichment in AU-rich elements (AREs). By examining the Gene Ontology (GO) database, a significant enrichment in cancer genes (such as MCL1, BCL2, ETS1, or JUN) that directly or indirectly affect apoptosis and cell cycle was found.


Cell | 1996

The FHIT gene at 3p14.2 is abnormal in lung cancer

Gabriella Sozzi; Maria Luisa Veronese; Massimo Negrini; Raffaele Baffa; Maria Grazia Cotticelli; Hiroshi Inoue; Silvana Tornielli; Silvana Pilotti; Laura De Gregorio; Ugo Pastorino; Marco A. Pierotti; Masataka Ohta; Kay Huebner; Carlo M. Croce

To determine the role of the FHIT gene, which encompasses the fragile site at 3p14.2, we analyzed 59 tumors of the small cell and non-small cell type by reverse transcription of FHIT mRNA, followed by PCR amplification and sequencing of products. Allelic losses affecting the gene were evaluated by microsatellite polymorphism analysis and genomic alterations by hybridization using cDNA and genomic probes. Small cell lung tumors (80%) and non-small cell lung cancers (40%) showed abnormalities in RNA transcripts of FHIT, and 76% of the tumors exhibited loss of FHIT alleles. Abnormal lung tumor transcripts lack two or more exons of the FHIT gene. Small cell lung cancer tumors and cell lines were analyzed by Southern blotting and showed rearranged BamHI fragments. These data suggest a critical role of the FHIT gene in lung carcinogenesis.


Oncogene | 2008

MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma

Francesca Fornari; Laura Gramantieri; Manuela Ferracin; Angelo Veronese; Silvia Sabbioni; Ga Calin; Gian Luca Grazi; Catia Giovannini; Cm Croce; Luigi Bolondi; Massimo Negrini

The identification of target mRNAs is a key step for assessing the role of aberrantly expressed microRNAs in human cancer. MiR-221 is upregulated in human hepatocellular carcinoma (HCC) as well as in other malignancies. One proven target of miR-221 is CDKN1B/p27, whose downregulation affects HCC prognosis. Here, we proved that the cyclin-dependent kinase inhibitor (CDKI) CDKN1C/p57 is also a direct target of miR-221. Indeed, downregulation of both CDKN1B/p27 and CDKN1C/p57 occurs in response to miR-221 transfection into HCC-derived cells and a significant upregulation of both CDKN1B/p27 and CDKN1C/p57 occurs in response to antimiR-221 transfection. A direct interaction of miR-221 with a target site on the 3′ UTR of CDKN1C/p57 mRNA was also demonstrated. By controlling these two CDKIs, upregulation of miR-221 can promote growth of HCC cells by increasing the number of cells in S-phase. To assess the relevance of these studies in primary tumors, matched HCC and cirrhosis samples were assayed for miR-221, for CDKN1B/p27 and CDKN1C/p57 expression. MiR-221 was upregulated in 71% of HCCs, whereas CDKN1B/p27 and CDKN1C/p57 proteins were downregulated in 77% of cases. A significant inverse correlation between miR-221 and both CDKN1B/p27 and CDKN1C/p57 was found in HCCs. In conclusion, we suggest that miR-221 has an oncogenic function in hepatocarcinogenesis by targeting CDKN1B/p27 and CDKN1C/p57, hence promoting proliferation by controlling cell-cycle inhibitors. These findings establish a basis toward the development of therapeutic strategies aimed at blocking miR-221 in HCC.


Oncogene | 2011

microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer

Chiara Braconi; Takayuki Kogure; Nicola Valeri; Nianyuan Huang; Gerard J. Nuovo; Stefan Costinean; Massimo Negrini; Elena Miotto; Carlo M. Croce; Tushar Patel

The human genome is replete with long non-coding RNAs (lncRNA), many of which are transcribed and likely to have a functional role. Microarray analysis of >23 000 lncRNAs revealed downregulation of 712 (∼3%) lncRNA in malignant hepatocytes, among which maternally expressed gene 3 (MEG3) was downregulated by 210-fold relative to expression in non-malignant hepatocytes. MEG3 expression was markedly reduced in four human hepatocellular cancer (HCC) cell lines compared with normal hepatocytes by real-time PCR. RNA in situ hybridization showed intense cytoplasmic expression of MEG3 in non-neoplastic liver with absent or very weak expression in HCC tissues. Enforced expression of MEG3 in HCC cells significantly decreased both anchorage-dependent and -independent cell growth, and induced apoptosis. MEG3 promoter hypermethylation was identified by methylation-specific PCR and MEG3 expression was increased with inhibition of methylation with either 5-Aza-2-Deoxycytidine, or siRNA to DNA Methyltransferase (DNMT) 1 and 3b in HCC cells. MiRNA-dependent regulation of MEG3 expression was studied by evaluating the involvement of miR-29, which can modulate DNMT 1 and 3. Overexpression of mir-29a increased expression of MEG3. GTL2, the murine homolog of MEG3, was reduced in liver tissues from hepatocyte-specific miR-29a/b1 knock-out mice compared with wild-type controls. These data show that methylation-dependent tissue-specific regulation of the lncRNA MEG3 by miR-29a may contribute to HCC growth and highlight the inter-relationship between two classes of non-coding RNA, miRNAs and lncRNAs, and epigenetic regulation of gene expression.


Cancer Research | 2009

MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells

Francesca Fornari; Laura Gramantieri; Catia Giovannini; Angelo Veronese; Manuela Ferracin; Silvia Sabbioni; George A. Calin; Gian Luca Grazi; Carlo M. Croce; Simona Tavolari; Pasquale Chieco; Massimo Negrini; Luigi Bolondi

The identification of target genes is a key step for assessing the role of aberrantly expressed microRNAs (miRNA) in human cancer and for the further development of miRNA-based gene therapy. MiR-122 is a liver-specific miRNA accounting for 70% of the total miRNA population. Its down-regulation is a common feature of both human and mouse hepatocellular carcinoma (HCC). We have previously shown that miR-122 can regulate the expression of cyclin G1, whose high levels have been reported in several human cancers. We evaluated the role of miR-122 and cyclin G1 expression in hepatocarcinogenesis and in response to treatment with doxorubicin and their relevance on survival and time to recurrence (TTR) of HCC patients. We proved that, by modulating cyclin G1, miR-122 influences p53 protein stability and transcriptional activity and reduces invasion capability of HCC-derived cell lines. In addition, in a therapeutic perspective, we assayed the effects of a restored miR-122 expression in triggering doxorubicin-induced apoptosis and we proved that miR-122, as well as cyclin G1 silencing, increases sensitivity to doxorubicin challenge. In patients resected for HCC, lower miR-122 levels were associated with a shorter TTR, whereas higher cyclin G1 expression was related to a lower survival, suggesting that miR-122 might represent an effective molecular target for HCC. Our findings establish a basis toward the development of combined chemo- and miRNA-based therapy for HCC treatment.

Collaboration


Dive into the Massimo Negrini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo M. Croce

Government of the United States of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George A. Calin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge