Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Pandolfo is active.

Publication


Featured researches published by Massimo Pandolfo.


Science | 1996

Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion

Victoria Campuzano; Laura Montermini; Maria Molto; Luigi Pianese; Mireille Cossée; Francesca Cavalcanti; Eugenia Monros; Rodius F; Franck Duclos; Antonella Monticelli; Federico Zara; Joaquín Cañizares; Hana Koutnikova; Sanjay I. Bidichandani; Cinzia Gellera; Alexis Brice; Paul Trouillas; Giuseppe De Michele; Alessandro Filla; Rosa de Frutos; Francisco Palau; Pragna Patel; Stefano Di Donato; Jean-Louis Mandel; Sergio Cocozza; Michel Koenig; Massimo Pandolfo

Friedreichs ataxia (FRDA) is an autosomal recessive, degenerative disease that involves the central and peripheral nervous systems and the heart. A gene, X25, was identified in the critical region for the FRDA locus on chromosome 9q13. The gene encodes a 210-amino acid protein, frataxin, that has homologs in distant species such as Caenorhabditis elegans and yeast. A few FRDA patients were found to have point mutations in X25, but the majority were homozygous for an unstable GAA trinucleotide expansion in the first X25 intron.


Neurology | 2006

Scale for the assessment and rating of ataxia: development of a new clinical scale.

Tanja Schmitz-Hübsch; S. Tezenas du Montcel; László Balikó; José Berciano; S Boesch; Chantal Depondt; Paola Giunti; Christoph Globas; Jon Infante; Jun-Suk Kang; Berry Kremer; C. Mariotti; Bela Melegh; Massimo Pandolfo; Maryla Rakowicz; Pascale Ribai; Rafal Rola; Ludger Schöls; Sandra Szymanski; B.P.C. van de Warrenburg; Alexandra Durr; Thomas Klockgether

Objective: To develop a reliable and valid clinical scale measuring the severity of ataxia. Methods: The authors devised the Scale for the Assessment and Rating of Ataxia (SARA) and tested it in two trials of 167 and 119 patients with spinocerebellar ataxia. Results: The mean time to administer SARA in patients was 14.2 ± 7.5 minutes (range 5 to 40). Interrater reliability was high, with an intraclass coefficient (ICC) of 0.98. Test-retest reliability was high with an ICC of 0.90. Internal consistency was high as indicated by Cronbachs α of 0.94. Factorial analysis revealed that the rating results were determined by a single factor. SARA ratings showed a linear relation to global assessments using a visual analogue scale, suggesting linearity of the scale (p < 0.0001, r2 = 0.98). SARA score increased with the disease stage (p < 0.001) and was closely correlated with the Barthel Index (r = −0.80, p < 0.001) and part IV (functional assessment) of the Unified Huntingtons Disease Rating Scale (UHDRS-IV) (r = −0.89, p < 0.0001), whereas it had only a weak correlation with disease duration (r = 0.34, p < 0.0002) Conclusions: The Scale for the Assessment and Rating of Ataxia is a reliable and valid measure of ataxia, making it an appropriate primary outcome measure for clinical trials.


The New England Journal of Medicine | 2011

HLA-A*3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans

Mark McCormack; Ana Alfirevic; Stephane Bourgeois; John J. Farrell; Dalia Kasperavičiūtė; Mary Carrington; Graeme J. Sills; Tony Marson; Xiaoming Jia; Paul I. W. de Bakker; Krishna Chinthapalli; Mariam Molokhia; Michael R. Johnson; Gerard O'Connor; Elijah Chaila; Saud Alhusaini; Rodney A. Radtke; Erin L. Heinzen; Nicole M. Walley; Massimo Pandolfo; Werner J. Pichler; B. Kevin Park; Chantal Depondt; Sanjay M. Sisodiya; David B. Goldstein; Panos Deloukas; Norman Delanty; Gianpiero L. Cavalleri; Munir Pirmohamed

BACKGROUND Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B*1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN) in the Han Chinese and other Asian populations but not in European populations. METHODS We performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions. RESULTS The HLA-A*3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P=3.5×10(-8)). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A*3101 allele (P=1.1×10(-6)). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS-TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18). CONCLUSIONS The presence of the HLA-A*3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.).


Annals of Neurology | 1999

Friedreich's ataxia : Point mutations and clinical presentation of compound heterozygotes

Mireille Cossée; Alexandra Durr; Michèle Schmitt; Niklas Dahl; Paul Trouillas; Patricia Allinson; Markus Kostrzewa; Annie Nivelon‐Chevallier; Karl‐Henrik Gustavson; Alfried Kohlschütter; Ulrich Müller; Jean-Louis Mandel; Alexis Brice; Michel Koenig; Francesca Cavalcanti; Angela Tammaro; Giuseppe De Michele; Alessandro Filla; Sergio Cocozza; Malgorzata Labuda; Laura Montermini; Josée Poirier; Massimo Pandolfo

Friedreichs ataxia is the most common inherited ataxia. Ninety‐six percent of patients are homozygous for GAA trinucleotide repeat expansions in the first intron of the frataxin gene. The remaining cases are compound heterozygotes for a GAA expansion and a frataxin point mutation. We report here the identification of 10 novel frataxin point mutations, and the detection of a previously described mutation (G130V) in two additional families. Most truncating mutations were in exon 1. All missense mutations were in the last three exons coding for the mature frataxin protein. The clinical features of 25 patients with identified frataxin point mutations were compared with those of 196 patients homozygous for the GAA expansion. A similar phenotype resulted from truncating mutations and from missense mutations in the carboxy‐terminal half of mature frataxin, suggesting that they cause a comparable loss of function. In contrast, the only two missense mutations located in the amino‐terminal half of mature frataxin (D122Y and G130V) cause an atypical and milder clinical presentation (early‐onset spastic gait with slow disease progression, absence of dysarthria, retained or brisk tendon reflexes, and mild or no cerebellar ataxia), suggesting that they only partially affect frataxin function. The incidence of optic disk pallor was higher in compound heterozygotes than in expansion homozygotes, which might correlate with a very low residual level of normal frataxin produced from the expanded allele. Ann Neurol 1999;45:200–206


Lancet Neurology | 2012

Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies.

Matthew Traylor; Martin Farrall; Elizabeth G. Holliday; Cathie Sudlow; Jemma C. Hopewell; Yu Ching Cheng; Myriam Fornage; M. Arfan Ikram; Rainer Malik; Steve Bevan; Unnur Thorsteinsdottir; Michael A. Nalls; W. T. Longstreth; Kerri L. Wiggins; Sunaina Yadav; Eugenio Parati; Anita L. DeStefano; Bradford B. Worrall; Steven J. Kittner; Muhammad Saleem Khan; Alex P. Reiner; Anna Helgadottir; Sefanja Achterberg; Israel Fernandez-Cadenas; Shérine Abboud; Reinhold Schmidt; Matthew Walters; Wei-Min Chen; E. Bernd Ringelstein; Martin O'Donnell

Summary Background Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes. Methods We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12 389 individuals with ischaemic stroke and 62 004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13 347 cases and 29 083 controls. Findings We verified previous associations for cardioembolic stroke near PITX2 (p=2·8×10−16) and ZFHX3 (p=2·28×10−8), and for large-vessel stroke at a 9p21 locus (p=3·32×10−5) and HDAC9 (p=2·03×10−12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p<5×10−6. However, we were unable to replicate any of these novel associations in the replication cohort. Interpretation Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes. Funding Wellcome Trust, UK Medical Research Council (MRC), Australian National and Medical Health Research Council, National Institutes of Health (NIH) including National Heart, Lung and Blood Institute (NHLBI), the National Institute on Aging (NIA), the National Human Genome Research Institute (NHGRI), and the National Institute of Neurological Disorders and Stroke (NINDS).


Journal of Biological Chemistry | 1998

Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo.

Keiichi Ohshima; Laura Montermini; Robert D. Wells; Massimo Pandolfo

Friedreich ataxia (FRDA) is associated with the expansion of a GAA·TTC triplet repeat in the first intron of the frataxin gene, resulting in reduced levels of frataxin mRNA and protein. To investigate the mechanisms by which the intronic expansion produces its effect, GAA·TTC repeats of various lengths (9 to 270 triplets) were cloned in both orientations in the intron of a reporter gene. Plasmids containing these repeats were transiently transfected into COS-7 cells. A length- and orientation-dependent inhibition of reporter gene expression was observed. RNase protection and Northern blot analyses showed very low levels of mature mRNA when longer GAA repeats were transcribed, with no accumulation of primary transcript. Replication of plasmids carrying long GAA·TTC tracts (∼250 triplets) was greatly inhibited in COS-7 cells compared with plasmids carrying (GAA·TTC)9 and (GAA·TTC)90. Replication inhibition was five times greater for the plasmid whose transcript contains (GAA)230than for the plasmid whose transcript contains (UUC)270. Our in vivo investigation revealed that expanded GAA·TTC repeats from intron I of the FRDA gene inhibit transcription rather than post-transcriptional RNA processing and also interfere with replication. The molecular basis for these effects may be the formation of non-B DNA structures.


Molecular Cell | 1999

Sticky DNA:Self-Association Properties of Long GAA·TTC Repeats in R·R·Y Triplex Structures from Friedreich’s Ataxia

Naoaki Sakamoto; Paul D. Chastain; Pawel Parniewski; Keiichi Ohshima; Massimo Pandolfo; Jack D. Griffith; Robert D. Wells

A novel DNA structure, sticky DNA, is described for lengths of (GAA.TTC)n found in intron 1 of the frataxin gene of Friedreichs ataxia patients. Sticky DNA is formed by the association of two purine.purine.pyrimidine (R.R.Y) triplexes in negatively supercoiled plasmids at neutral pH. An excellent correlation was found between the lengths of (GAA.TTC) (> 59 repeats): first, in FRDA patients, second, required to inhibit transcription in vivo and in vitro, and third, required to adopt the sticky conformation. Fourth, (GAAGGA.TCCTTC)65, also found in intron 1, does not form sticky DNA, inhibit transcription, or associate with the disease. Hence, R.R.Y triplexes and/or sticky DNA may be involved in the etiology of FRDA.


Journal of Neurology | 2009

Friedreich ataxia: The clinical picture

Massimo Pandolfo

Friedreich ataxia (FRDA) is a rare autosomal recessive hereditary disorder that affects approximately 1 in 50,000 Caucasians. It is caused by hyperexpansion of GAA repeats in the first intron of the frataxin gene. Initial symptoms of FRDA usually appear around the beginning of the second decade of life. In addition to neuropathological disabilities such as ataxia, sensory loss, and muscle weakness, common signs are scoliosis, foot deformity, and hypertrophic cardiomyopathy. Approximately 10 % of patients with FRDA develop diabetes. The neuronopathy in the dorsal root ganglia, accompanied by the loss of peripheral sensory nerve fibres and the degeneration of posterior columns of the spinal cord, is a hallmark of the disease and is responsible for the typical combination of signs and symptoms specific to FRDA. Variation in neurophysiological abnormalities is correlated with the size of the GAA repeat expansion and likely accounts for individual variation in the progression of FRDA. Despite a range of disease severity, most patients will lose their ability to walk, stand, or sit without support within 10 to 15 years of disease onset. In addition to a review of the clinicopathological features of FRDA, a discussion of recent advances in our understanding of the underlying molecular mechanisms is provided.


American Journal of Human Genetics | 2010

Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes.

Erin L. Heinzen; Rodney A. Radtke; Thomas J. Urban; Gianpiero L. Cavalleri; Chantal Depondt; Anna C. Need; Nicole M. Walley; Paola Nicoletti; Dongliang Ge; Claudia B. Catarino; John S. Duncan; Dalia Kasperavičiūte; Sarah K. Tate; Luis O. Caboclo; Josemir W. Sander; Lisa M. Clayton; Kristen N. Linney; Curtis Gumbs; Jason Smith; Kenneth D. Cronin; Jessica M. Maia; Colin P. Doherty; Massimo Pandolfo; David Leppert; Lefkos T. Middleton; Rachel A. Gibson; Michael R. Johnson; Paul M. Matthews; David A. Hosford; Reetta Kälviäinen

Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions.


Journal of Neurology | 2009

The pathogenesis of Friedreich ataxia and the structure and function of frataxin

Massimo Pandolfo; Annalisa Pastore

Understanding the role of frataxin in mitochondria is key to an understanding of the pathogenesis of Friedreich ataxia. Frataxins are small essential proteins whose deficiency causes a range of metabolic disturbances, which include oxidative stress, deficit of iron-sulphur clusters, and defects in heme synthesis, sulfur amino acid and energy metabolism, stress response, and mitochondrial function. Structural studies carried out on different orthologues have shown that the frataxin fold consists of a flexible N-terminal region present only in eukaryotes and in a highly conserved C-terminal globular domain. Frataxins bind iron directly but with very unusual properties: iron coordination is achieved solely by glutamates and aspartates exposed on the protein surface. It has been suggested that frataxin function is that of a ferritin-like protein, an iron chaperone of the ironsulphur cluster machinery and heme metabolism and/or a controller of cellular oxidative stress. To understand FRDA pathogenesis and to design novel therapeutic strategies, we must first precisely identify the cellular role of frataxin.

Collaboration


Dive into the Massimo Pandolfo's collaboration.

Top Co-Authors

Avatar

Myriam Rai

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Paola Giunti

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chantal Depondt

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caterina Mariotti

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Dagmar Timmann

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Alessandro Filla

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario-Ubaldo Manto

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge