Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Spada is active.

Publication


Featured researches published by Massimo Spada.


PLOS ONE | 2009

High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

Mariantonia Logozzi; Angelo De Milito; Luana Lugini; Martina Borghi; Luana Calabrò; Massimo Spada; Maurizio Perdicchio; Maria Lucia Marino; Cristina Federici; Elisabetta Iessi; Daria Brambilla; Giulietta Venturi; Francesco Lozupone; Mario Santinami; Veronica Huber; Michele Maio; Licia Rivoltini; Stefano Fais

Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. Conclusions/Significance We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.


Journal of Virology | 2001

Chimeric Plant Virus Particles as Immunogens for Inducing Murine and Human Immune Responses against Human Immunodeficiency Virus Type 1

Carla Marusic; Paola Rizza; Laura Lattanzi; Camillo Mancini; Massimo Spada; Filippo Belardelli; Eugenio Benvenuto; Imerio Capone

ABSTRACT The high-yield expression of a neutralizing epitope from human immunodeficiency virus type 1 (HIV-1) on the surface of a plant virus and its immunogenicity are presented. The highly conserved ELDKWA epitope from glycoprotein (gp) 41 was expressed as an N-terminal translational fusion with the potato virus X (PVX) coat protein. The resulting chimeric virus particles (CVPs), purified and used to immunize mice intraperitoneally or intranasally, were able to elicit high levels of HIV-1-specific immunoglobulin G (IgG) and IgA antibodies. Furthermore, the human immune response to CVPs was studied with severe combined immunodeficient mice reconstituted with human peripheral blood lymphocytes (hu-PBL-SCID). hu-PBL-SCID mice immunized with CVP-pulsed autologous dendritic cells were able to mount a specific human primary antibody response against the gp41-derived epitope. Notably, sera from both normal and hu-PBL-SCID mice showed an anti-HIV-1-neutralizing activity. Thus, PVX-based CVPs carrying neutralizing epitopes can offer novel perspectives for the development of effective vaccines against HIV and, more generally, for the design of new vaccination strategies in humans.


Journal of Experimental Medicine | 2003

Potent Immune Response against HIV-1 and Protection from Virus Challenge in hu-PBL-SCID Mice Immunized with Inactivated Virus-pulsed Dendritic Cells Generated in the Presence of IFN-α

Caterina Lapenta; Stefano M. Santini; Mariantonia Logozzi; Massimo Spada; Mauro Andreotti; Tiziana Di Pucchio; Stefania Parlato; Filippo Belardelli

A major challenge of AIDS research is the development of therapeutic vaccine strategies capable of inducing the humoral and cellular arms of the immune responses against HIV-1. In this work, we evaluated the capability of DCs pulsed with aldrithiol-2–inactivated HIV-1 in inducing a protective antiviral human immune response in SCID mice reconstituted with human PBL (hu-PBL-SCID mice). Immunization of hu-PBL-SCID mice with DCs generated after exposure of monocytes to GM-CSF/IFN-α (IFN-DCs) and pulsed with inactivated HIV-1 resulted in a marked induction of human anti–HIV-1 antibodies, which was associated with the detection of anti-HIV neutralizing activity in the serum. This vaccination schedule also promoted the generation of a human CD8+ T cell response against HIV-1, as measured by IFN-γ Elispot analysis. Notably, when the hu-PBL-SCID mice immunized with antigen-pulsed IFN-DCs were infected with HIV-1, inhibition of virus infection was observed as compared with control animals. These results suggest that IFN-DCs pulsed with inactivated HIV-1 can represent a valuable approach of immune intervention in HIV-1–infected patients.


European Journal of Immunology | 2006

IFN‐α‐conditioned dendritic cells are highly efficient in inducing cross‐priming CD8+ T cells against exogenous viral antigens

Caterina Lapenta; Stefano M. Santini; Massimo Spada; Simona Donati; Francesca Urbani; Daniele Accapezzato; Debora Franceschini; Mauro Andreotti; Vincenzo Barnaba; Filippo Belardelli

Dendritic cells (DC) generated after a short‐term exposure of monocytes to IFN‐α and GM‐CSF (IFN‐DC) are highly effective in inducing cross‐priming of CD8+ T cells against viral antigens. We have investigated the mechanisms responsible for the special attitude of these DC and compared their activity with that of reference DC. Antigen uptake and endosomal processing capabilities were similar for IFN‐DC and IL‐4‐derived DC. Both DC types efficiently cross‐presented soluble HCV NS3 protein to the specific CD8+ T cell clone, even though IFN‐DC were superior in cross‐presenting low amounts of viral antigens. Moreover, when DC were pulsed with inactivated HIV‐1 and injected into hu‐PBL‐SCID mice, the generation of virus‐specific CD8+ T cells was markedly higher in animals immunized with IFN‐DC than in mice immunized with CD40L‐matured IL‐4‐DC. Of interest, in experiments with purified CD8+ T cells, IFN‐DC were superior with respect to CD40L‐matured IL‐4‐DC in inducing in vitro cross‐priming of HIV‐specific CD8+ T cells. This property correlated with enhanced potential to express the specific subunits of the IL‐23 and IL‐27 cytokines. These results suggest that IFN‐DC are directly licensed for an efficient CD8+ T cell priming by mechanisms likely involving enhanced antigen presentation and special attitude to produce IL‐12 family cytokines.


Cancer Research | 2004

Effect Of Human Natural Killer and γδ T Cells on the Growth of Human Autologous Melanoma Xenografts in SCID Mice

Francesco Lozupone; Daniela Pende; Vito L. Burgio; Chiara Castelli; Massimo Spada; Massimo Venditti; Francesca Luciani; Luana Lugini; Cristina Federici; Carlo Ramoni; Licia Rivoltini; Giorgio Parmiani; Filippo Belardelli; Paola Rivera; Stefania Marcenaro; Lorenzo Moretta; Stefano Fais

Natural killer (NK) cells were first identified for their ability to kill tumor cells of different origin in vitro. Similarly, γδ T lymphocytes display strong cytotoxic activity against various tumor cell lines. However, the ability of both the NK and γδ cells to mediate natural immune response against human malignant tumors in vivo is still poorly defined. Severe combined immunodeficient (SCID) mice have been successfully engrafted with human tumors. In this study, the antitumor effect of local as well as of systemic treatments based on NK cells or Vδ1 or Vδ2 γ/δ T lymphocytes against autologous melanoma cells was investigated in vivo. The results show that all three of the populations were effective in preventing growth of autologous human melanomas when both tumor and lymphoid cells were s.c. inoculated at the same site. However, when lymphoid cells were infused i.v., only NK cells and Vδ1 γ/δ T lymphocytes could either prevent or inhibit the s.c. growth of autologous melanoma. Accordingly, both NK cells and Vδ1 γδ T lymphocytes could be detected at the s.c. tumor site. In contrast, Vδ2 γδ T lymphocytes were only detectable in the spleen of the SCID mice. Moreover, NK cells maintained their inhibitory effect on tumor growth even after discontinuation of the treatment. Indeed they were present at the tumor site for a longer period. These data support the possibility to exploit NK cells and Vδ1 γδ T lymphocytes in tumor immunotherapy. Moreover, our study emphasizes the usefulness of human tumor/SCID mouse models for preclinical evaluation of immunotherapy protocols against human tumors.


Journal of Immunology | 2003

Monocyte-derived dendritic cells generated after a short-term culture with IFN-α and granulocyte-macrophage colony-stimulating factor stimulate a potent epstein-barr virus-specific CD8+ T cell response

Laura Santodonato; Giuseppina D'Agostino; Roberto Nisini; Sabrina Mariotti; Domenica M. Monque; Massimo Spada; Laura Lattanzi; Maria Paola Perrone; Mauro Andreotti; Filippo Belardelli; Maria Ferrantini

Cellular immune responses are crucial for the control of EBV-associated lymphoproliferative diseases. To induce an anti-EBV cell-mediated immunity, we have used dendritic cells (DCs) generated by a 3-day culture of human CD14+ monocytes in the presence of GM-CSF and type I IFN (IFN-DCs) and pulsed with peptides corresponding to CTL EBV epitopes. The functional activity of IFN-DCs was compared with that of APCs differentiated by culturing monocytes for 3 days with GM-CSF and IL-4 and indicated as IL-4-DCs. Stimulation of PBLs from EBV-seropositive donors with EBV peptide-pulsed autologous IFN-DCs resulted in a stronger expansion of specific T lymphocytes producing IFN-γ with respect to stimulation with peptide-loaded IL-4-DCs, as assessed by ELISPOT assays. When purified CD8+ T cells were cocultured with EBV peptide-pulsed IFN-DCs or IL-4-DCs, significantly higher levels of specific cytotoxic activity were observed in CD8+ T cell cultures stimulated with IFN-DCs. Injection of peptide-pulsed IFN-DCs into SCID mice transplanted with autologous PBLs led to the recovery of a significantly greater number of EBV-specific human CD8+ T cells from the spleen and the peritoneal cavity with respect to that recovered from mice injected with peptide-pulsed IL-4-DCs. Moreover, a significant delay in lymphoma development was observed when peptide-pulsed IFN-DCs were injected into SCID mice reconstituted with PBMCs endowed with a high capability of lymphoma induction, whereas injection of unpulsed IFN-DCs was ineffective. Our results indicate that IFN-DCs efficiently promote in vitro and in vivo the expansion of CD8+ T lymphocytes acting as cytotoxic effectors against EBV-transformed cells.


Journal of Immunology | 2011

Type I IFNs Control Antigen Retention and Survival of CD8α+ Dendritic Cells after Uptake of Tumor Apoptotic Cells Leading to Cross-Priming

Silvia Lorenzi; Fabrizio Mattei; Antonella Sistigu; Laura Bracci; Francesca Spadaro; Massimo Sanchez; Massimo Spada; Filippo Belardelli; Lucia Gabriele; Giovanna Schiavoni

Cross-presentation is a crucial mechanism for generating CD8 T cell responses against exogenous Ags, such as dead cell-derived Ag, and is mainly fulfilled by CD8α+ dendritic cells (DC). Apoptotic cell death occurring in steady-state conditions is largely tolerogenic, thus hampering the onset of effector CD8 T cell responses. Type I IFNs (IFN-I) have been shown to promote cross-priming of CD8 T cells against soluble or viral Ags, partly through stimulation of DC. By using UV-irradiated OVA-expressing mouse EG7 thymoma cells, we show that IFN-I promote intracellular Ag persistence in CD8α+ DC that have engulfed apoptotic EG7 cells, regulating intracellular pH, thus enhancing cross-presentation of apoptotic EG7-derived OVA Ag by CD8α+ DC. Notably, IFN-I also sustain the survival of Ag-bearing CD8α+ DC by selective upmodulation of antiapoptotic genes and stimulate the activation of cross-presenting DC. The ensemble of these effects results in the induction of CD8 T cell effector response in vitro and in vivo. Overall, our data indicate that IFN-I cross-prime CD8 T cells against apoptotic cell-derived Ag both by licensing DC and by enhancing cross-presentation.


AIDS | 2001

Vaginal transmission of HIV-1 in hu-SCID mice: a new model for the evaluation of vaginal microbicides.

Simonetta Di Fabio; Giacomo Giannini; Caterina Lapenta; Massimo Spada; Andrea Binelli; Elena Germinario; Paola Sestili; Filippo Belardelli; Enrico Proietti; Stefano Vella

ObjectiveTo develop an animal model of vaginal transmission of HIV-1 for the evaluation of vaginal microbicides. DesignVaginal infection was performed in SCID mice reconstituted with 4 × 107 human peripheral blood lymphocytes (hu-PBL) by non-invasive vaginal administration. The hu-PBL were previously infected in vitro with a non-syncytium (NSI) strain of HIV-1 (SF162) (hu-PBL-SCID). Lymphocyte migration in vivo was examined using fluorescently labelled human lymphocytes. MethodsThe percentage of CD4 T cells, plasma viral load and p24 antigen were evaluated using fluorescent activated cell sorting (FACS), the Amplicor HIV-1 monitor kit and enzyme-linked immunosorbent assay, respectively. Polymerase chain reaction (PCR) analysis was performed on DNA extracted from spleen and lymph nodes. For in vivo migration of labelled lymphocytes, the mice were sacrified after 4, 24 and 48 h; vaginae and local lymph nodes were removed, snap frozen with OCT, sectioned and examined by fluorescent microscopy and FACS. ResultsHIV transmission was established using virus-infected cells inoculated vaginally, as shown by FACS, HIV viral load, p24 and PCR results. Labelled cells were easily located within the vaginal tissues after 4 h. However, few or no cells could be identified after 24 or 48 h at the vaginal level, whereas labelled cells could be detected at the level of regional lymph nodes. ConclusionsBecause of its simplicity and practical features compared with other animal models, the vaginal HIV-infected hu-SCID mouse model may prove useful to test the activity of compounds against cell-associated HIV and, possibly, other sexually transmitted diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Anti-nerve growth factor Ab abrogates macrophage-mediated HIV-1 infection and depletion of CD4+ T lymphocytes in hu-SCID mice

Enrico Garaci; Stefano Aquaro; Caterina Lapenta; Alessandra Amendola; Massimo Spada; Sonia Covaceuszach; Carlo Federico Perno; Filippo Belardelli

Infection by HIV-1 causes persistent, long-term high virus production in macrophages. Major evidence, both in humans and in primate models, shows the crucial role of macrophages in sustaining virus production and in mediating a cytopathic effect on bystander CD4+ T lymphocytes and neuronal cells. In the present study, we used severe combined immunodeficient (SCID) mice engrafted with human peripheral blood lymphocytes (hu-PBL-SCID mice) to investigate the in vivo effect of HIV-1-infected macrophages on virus spread and CD4+ T lymphocyte depletion, and the ability of a mAb against nerve growth factor (NGF, a neurokine essential for the survival of HIV-1-infected macrophages) to suppress the pathogenetic events mediated by infected macrophages. Injection of mice with as few as 500 HIV-exposed macrophages causes (i) complete depletion of several millions of autologous CD4+ T lymphocytes, (ii) sustained HIV viremia, and (iii) spreading of HIV-1 DNA in mouse lymphoid organs. In contrast, in vivo treatment with an anti-NGF Ab completely abrogates all effects mediated by HIV-infected macrophages. Taken together, the results demonstrate the remarkable power of macrophages in sustaining in vivo HIV-1 infection, and that such a phenomenon can be specifically abrogated by an anti-NGF Ab. This may open new perspectives of experimental approaches aimed at selectively eliminating persistently infected macrophages from the bodies of HIV-infected patients.


International Journal of Cancer | 2009

Pleiotropic function of ezrin in human metastatic melanomas

Cristina Federici; Daria Brambilla; Francesco Lozupone; Paola Matarrese; Angelo De Milito; Luana Lugini; Elisabetta Iessi; Serena Cecchetti; Marialucia Marino; Maurizio Perdicchio; Mariantonia Logozzi; Massimo Spada; Walter Malorni; Stefano Fais

The membrane cytoskeleton cross‐linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N‐terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp‐1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp‐1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors.

Collaboration


Dive into the Massimo Spada's collaboration.

Top Co-Authors

Avatar

Filippo Belardelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Caterina Lapenta

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Stefano M. Santini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Mariantonia Logozzi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Stefania Parlato

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Stefano Fais

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Enrico Proietti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Daniele Macchia

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Paola Rizza

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Alessandro Ricci

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge