Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Vincenzini is active.

Publication


Featured researches published by Massimo Vincenzini.


Journal of Applied Phycology | 2001

Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review

Roberto De Philippis; Claudio Sili; Raffaella Paperi; Massimo Vincenzini

Since the early 1950s, more than one hundred cyanobacterial strains,belonging to twenty different genera, have been investigated with regard tothe production and the released exocellular polysaccharides (RPS) into theculture medium. The chemical and rheological properties show that suchpolysaccharides are complex anionic heteropolymers, in about 80% casescontaining six to ten different monosaccharides and in about 90% casescontaining one or more uronic acids; almost all have non-saccharidiccomponents, such as peptidic moieties, acetyl, pyruvyl and/or sulphategroups. Based on such ingredients, cyanobacterial RPSs show promise asthickening or suspending agents, emulsifying or cation-chelating compoundsand the residual capsulated cyanobacterial biomass, following RPSextraction, could be an effective cation-chelating material. Indeed, wheneleven unicellular and filamentous RPS-producing cyanobacteria, selectedon the basis of the anion density of their RPSs and on the abundance oftheir outermost investments, were screened for their ability to removeCu2+ from aqueous solutions, a quick and most effective heavy metaladsorption was observed for the unicellular Cyanothece CE 4 and thefilamentous Cyanospira capsulata. These results suggest the possibilityto accomplish, through the exploitation of RPS-producing cyanobacteria,a multiproduct strategy to procure a wide range of biopolymers suited tovarious industrial applications, in addition to the residual biomass effectivein the recovery of heavy metals from polluted waters.


Journal of Biotechnology | 1999

Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors

G. Chini Zittelli; F. Lavista; A. Bastianini; Liliana Rodolfi; Massimo Vincenzini; Mario R. Tredici

Autotrophic microalgae cultures have been proposed as an alternative source of EPA, a nutritionally important polyunsaturated fatty acid that plays a key role in the prevention and treatment of several human diseases and disorders. The technology currently available is however, considered commercially not viable because of the low degree of control of algae cultures in outdoor open ponds. The use of closed reactors could overcome these limitations and bring EPA production by microalgae closer to becoming a reality. In this study, we have demonstrated the feasibility of outdoor cultivation of Nannochloropsis sp. in tubular reactors and the potential of this eustigmatophyte as an alternative source of EPA. Nannochloropsis sp. was cultivated in NHTRs of different sizes (from 10.2 to 610 1) from spring to autumn under the climatic conditions of central Italy. EPA productivity essentially reflected the productivity of the culture and reached its maximum in May-June (mean monthly value: 32 mg l− 1 day− 1). Although the fatty acid composition of the biomass varied significantly during the cultivation period, EPA content remained rather stable around the value of 4% of dry biomass. The transfer of the cultures from laboratory to outdoor conditions, the exposure to natural light-dark cycles, along with lowering the salt concentration from 33 g l− 1 (seawater salinity value) to 20 g l− 1, factors that caused lasting modifications in the fatty acid content and composition of Nannochloropsis sp., did not significantly affect the EPA content of the biomass.


Journal of Biotechnology | 2003

Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity

Ana Otero; Massimo Vincenzini

A study on the effect of two of the main factors affecting energy flux in N(2)-fixing cyanobacteria, i.e. light intensity and availability of combined nitrogen, on the synthesis of soluble exopolysaccharides was carried out with three strains of the genus Nostoc (PCC 7413, PCC 7936, and PCC 8113) presenting different capsular polysaccharidic morphologies and released polysaccharide productions. Strains acclimated to diazotrophic and non-diazotrophic conditions were cultured at high and low light intensities in aerated batch cultures. High light intensities enhanced total carbohydrate synthesis in all the strains but growth measured as pigment and protein concentration, total and soluble carbohydrate concentrations presented a strain-dependent response to nitrate availability. When adequately acclimated to the presence of nitrate all the capsulated strains tested became non-capsulated, with no extracellular polysaccharide being produced. Carbon availability can be on the basis of the observed correlation between the synthesis of capsular polysaccharides and diazotrophy. The slime-forming strain Nostoc PCC 7413 was the only one releasing polysaccharides into the surrounding medium under both, diazotrophic and non-diazotrophic conditions, with the highest values being obtained in the presence of nitrate. This strain presented the highest total carbohydrate (3.5 gl(-1)), soluble carbohydrate (1.8 gl(-1)) concentrations and viscosity values of all the tested strains. Different mechanisms of nitrogen-control of the synthesis of exocellular polysaccharides are reported for each strain, which results in the requirement of a species-specific optimisation of the cultivation conditions for the development of an efficient technology for the production of cyanobacterial exopolysaccharides.


Current Microbiology | 2002

Biogenic amine production by Oenococcus oeni.

Simona Guerrini; Silvia Mangani; Lisa Granchi; Massimo Vincenzini

The biogenic amine-producing capability of several Oenococcus oeni strains, originally isolated from different Italian wines, was determined. The amine-producing capability was quali-quantitatively variable among the strains: out of the 44 strains investigated under optimal growth conditions, more than 60% were able to produce histamine, at concentrations ranging from 1.0 to 33 mg/L, and about 16% showed the additional capability to form both putrescine and cadaverine, to different extents and variable relative proportions. The amine-producing behavior of the strains was confirmed under stress culture conditions, while performing malolactic fermentation. In wine, one randomly chosen strain was very effective in forming putrescine from ornithine. The formation of putrescine from arginine by some strains has been also demonstrated. Consequently, O. oeni can really and significantly contribute to the overall biogenic amine content of wines. Practical consequences of these findings are discussed.


Journal of Applied Phycology | 2003

Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936

Roberto De Philippis; Raffaella Paperi; Claudio Sili; Massimo Vincenzini

Two capsulated, exopolysaccharide-producing cyanobacteria, Cyanospira capsulata and Nostoc PCC7936, were tested with regard to their metal removal capability by using copper as model metal. The experiments, carried out with the sole cyanobacterial biomass suspended in distilled water and confined into small dialysis tubings, showed that C. capsulata biomass is characterized by the best efficiency in metal removal, with a qmax (maximum amount of copper removed per biomass unit) of 96 ± 2 mg Cu(II) removed per g of protein in comparison with the value of 79 ± 3 of Nostoc PCC7936 biomass. The experimental data obtained with both cyanobacterial biomass best fit the Langmuir sorption isotherm. The sorption of copper started from the first minutes of contact with the metal and attained the equilibrium state, when no more copper removal was evident, after 5 and 6 hours, for C. capsulata and Nostoc PCC7936, respectively. The best efficiency in Cu(II) removal was obtained at pH 6.1–6.2, while the presence of Mg2+ or Ca2+ reduced copper removal capability of both species to 60–70% of their qmax. The results showed that the biomass of C. capsulata and Nostoc PCC7936 possesses a high affinity and a high specific uptake for copper, comparable with the best performances shown by other microbial biomass, and suggest the possibility to use the capsulated trichomes of the two cyanobacteria for the bioremoval of heavy metals from polluted water bodies.


Journal of Phycology | 2004

Nostoc (Cyanophyceae) goes nude: Extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism

Ana Otero; Massimo Vincenzini

Many species of the filamentous N2‐fixing heterocyst‐forming Cyanobacteria of the genus Nostoc produce large amounts of extracellular polymeric substances (EPS), but hitherto no general model has been proposed of the factors that control their synthesis. Previously, we demonstrated a strong correlation between the presence of a glycocalyx (or EPS capsule) and diazotrophic growth in the genus Nostoc. When grown with nitrate, nude morphotypes lacking a glycocalyx were obtained for all the capsulated strains tested. CO2 availability was pro‐posed as a key factor that controls the synthesis of the capsule. To test this hypothesis, Nostoc PCC 7936 was cultured diazotrophically (N2) or with nitrate with different CO2 supplies. By tuning the pH and the supply of CO2, capsulated or nude mor‐photypes were obtained irrespective of the source of nitrogen. Exocellular polysaccharides were synthesized only when the fixed carbon exceeded the amount of nitrogen available. The glycocalyx is not needed for the optimal functioning of nitrogenase because diazotrophic cultures grew equally well, irrespective of whether they were capsulated or nude. Capsulated cultures possessed protein to carbohydrate ratios that ranged between 1 and 1.5, whereas in nude cultures the ratio ranged between 2 and 2.5. Low protein to carbohydrate ratios were indicative for either nitrogen‐limited or carbon‐oversaturated cultures. The results demonstrate that in Nostoc EPS serve as a sink for the excess fixed carbon under unbalanced C/N metabolism.


Applied Microbiology and Biotechnology | 1990

STUDIES ON EXOPOLYSACCHARIDE RELEASE BY DIAZOTROPHIC BATCH CULTURES OF CYANOSPIRA CAPSULATA

Massimo Vincenzini; Roberto De Philippis; Claudio Sili; R. Materassi

SummaryDiazotrophic batch cultures of Cyanospira capsulata producing large amounts of a soluble exopolysaccharide (EPS) were studied over a period of about 30 days under continuous illumination. The thickness of the capsule surrounding the trichomes remained almost the same throughout the growth phases and the EPS was continuously released into the medium at a rate which was roughly constant throughout the culture period. A mean EPS productivity of about 6 g m−2 day−1 was attained. Purified EPS samples exhibited a saccharidic composition consisting of four neutral sugars (glucose, mannose, fucose and arabinose) and galacturonic acid in a molar ratio of 1:1:1:1:2, respectively. The EPS was also characterized by the presence of pyruvic residues and by a protein content of about 2%. O-Acetyl groups and sulphate residues were not detected. The massive release of this polysaccharidic material into the liquid medium made the cultures progressively more viscous.


Microbiology | 1992

Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima

R. De Philippis; Claudio Sili; Massimo Vincenzini

The effect of different growth conditions on the glycogen and poly-β-hydroxybutyrate (PHB) content of the cyanobacterium Spirulina maxima is described. Under photoautotrophic growth conditions without any nutrient limitation, S. maxima exhibited a glycogen content of between 7.1 and 10.7% of cell dry wt, whereas PHB was undetectable. When S. maxima was grown under mixotrophic conditions in the presence of acetate, the intracellular PHB concentration increased to more than 3% of dry wt, while glycogen content remained within the range of 5 to 6% of cell dry wt. Nitrogen starvation favoured glycogen accumulation (up to 60 to 70% of dry wt), while the PHB content remained low (up to 0.7% of dry wt), even after prolonged nitrogen starvation. Inhibition of protein synthesis, induced by addition of azaserine, led to the accumulation of glycogen (up to 52% of cell dry wt) but did not stimulate PHB synthesis. Under phosphorus-limited growth conditions, glycogen and PHB accumulated (up to 23% and 1.2% of cell dry wt, respectively) only after the exhaustion of intracellular phosphorus reserves. Shifting the culture from low to high light irradiance induced a rapid accumulation of glycogen (up to 34% of cell dry wt after 9 h) but did not induce PHB synthesis. Results are discussed in terms of the metabolic significance of PHB synthesis in cyanobacteria, and suggest that this polymer acts exclusively as a disposal mechanism to eliminate excess reducing equivalents.


International Journal of Food Microbiology | 2003

Phenotypic and genotypic characterization of Oenococcus oeni strains isolated from Italian wines

Simona Guerrini; A. Bastianini; Giuseppe Blaiotta; Lisa Granchi; Giancarlo Moschetti; S. Coppola; Patrizia Romano; Massimo Vincenzini

A phenotypic and genotypic characterization of 84 Oenococcus oeni isolates from Italian wines of different oenological areas was carried out. Numerical analysis of fatty acid profiles grouped the isolates into two clusters at low level of similarity (63%), the minor cluster containing seven isolates besides the type and the reference strains. Forthy-eight O. oeni isolates, representative of the two clusters, showed no differences in their metabolic properties (heterolactic fermentation pattern, citrate degradation capability and formation of some secondary metabolites). Moreover, the analysis of species-specific randomly amplified polymorphic DNA and 16S-23S rDNA intergenic spacer region polymorphism as well as the sequence-specific separation of V3 region from 16S rDNA by denaturing gradient gel electrophoresis demonstrated a substantial homogeneity among the isolates. On the basis of ApaI Pulsed Field Gel Electrophoresis (PFGE) restriction patterns, the 84 isolates were grouped into five different clusters at 70% similarity, but no correlation with the phenotypic groups could be demonstrated. However, by combining phenotypic and genotypic data, the 84 O. oeni isolates grouped into eight phenotypic-genotypic combined profiles and a relationship between the origin of the isolates and their combined profile became evident, so that a sort of strain specificity can be envisaged for each wine-producing area.


Archives of Microbiology | 1985

Cyanospira rippkae and Cyanospira capsulata (gen. nov. and spp. nov.): new filamentous heterocystous cyanobacteria from Magadi lake (Kenya)

G. Florenzano; Claudio Sili; E. Pelosi; Massimo Vincenzini

New filamentous heterocystous cyanobacteria were isolated from the alkaline soda lake Magadi in Kenya. The characteristics of the isolates are summarized and their taxonomic position discussed.Uniform attributes of the strains, grouped in two types, Mag II 702 and Mag I 504 are the following: helical structure of the trichomes, immotility, gas vacuolation, obligate autotrophy, nitrogen fixation under aerobic conditions, and closely similar fatty acid composition, including the uncommon cis-vaccenic acid.For these organisms the assignment to a new genus named Cyanospira is proposed with the species C. rippkae and C. capsulata, separated on the basis of structural, chemical and mean DNA-base composition. Type strains 702 and 504 will be deposited at the ATCC and PCC.

Collaboration


Dive into the Massimo Vincenzini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. De Philippis

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alba Ena

University of Florence

View shared research outputs
Top Co-Authors

Avatar

Y. Romboli

University of Florence

View shared research outputs
Researchain Logo
Decentralizing Knowledge