Massimo Zani
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Massimo Zani.
EMBO Reports | 2002
Giuseppe Giannini; Elisabetta Ristori; Fabio Cerignoli; Christian Rinaldi; Massimo Zani; Alessandra Viel; Laura Ottini; Marco Crescenzi; Stefano Martinotti; Margherita Bignami; Luigi Frati; Isabella Screpanti; Alberto Gulino
Mutations of the ATM and NBS1 genes are responsible for the inherited Ataxia‐Telangiectasia and Nijmegen Breakage Syndrome, both of which are associated with a predisposition to cancer. A related syndrome, the Ataxia‐Telangiectasia‐like disorder, is due to mutations of the MRE11 gene. However, the role of this gene in cancer development has not been established. Here we describe an often homozygous mutation of the poly(T)11 repeat within human MRE11 intron 4 that leads to aberrant splicing, impairment of wild‐type MRE11 expression and generation of a truncated protein. This mutation is present in mismatch repair‐deficient, but not proficient, colorectal cancer cell lines and primary tumours and is associated with reduced expression of the MRE11–NBS1–RAD50 complex, an impaired S‐phase checkpoint and abrogation of MRE11 and NBS1 ionizing radiation‐induced nuclear foci. Our findings identify MRE11 as a novel and major target for inactivation in mismatch repair‐defective cells and suggest its impairment may contribute to the development of colorectal cancer.
Molecular Carcinogenesis | 2003
Giuseppe Giannini; Maria Irene Ambrosini; Lucia Di Marcotullio; Fabio Cerignoli; Massimo Zani; Andrew R. Mackay; Isabella Screpanti; Luigi Frati; Alberto Gulino
The abnormal activation of the epidermal growth factor (EGF) pathway is one of the most common findings in human cancer, and a number of molecular devices of laboratory and clinical relevance have been designed to block this transduction pathway. Because of the large number of cellular events that might be regulated through the activation of the four EGF receptor family members, it is possible that screening methodologies for the identification of new molecular targets working downstream of these pathways may provide new tools for cancer diagnosis and potentially prevention and therapy. In searching for EGF target genes, we have identified ERG1.2, the mouse homolog of the solid tumor‐associated gene STAG1. Both in humans and in mice, it belongs to a new gene family that can give origin to several protein isoforms through alternative splicing and/or multiple translation starts. Sequence analysis and experimental data suggest that ERG1.2 is likely to function as a membrane‐bound protein interacting with downstream signaling molecules through WW‐ and SH3‐binding domains. ERG1.2 is a cell‐cycle–regulated gene, and both ERG1.2 and STAG1 are induced by EGF and other growth factors at the transcript and protein levels. Finally, we have demonstrated that, besides prostate cancer and renal cell carcinoma, STAG1 was also overexpressed in breast and ovarian cancer cell lines and in breast primary tumors. Although in most cases STAG1 overexpression is probably due to the abnormal activation of the EGF pathway, we have also demonstrated genetic amplification and rearrangement of its locus in one breast cancer cell line and one primary ovarian cancer, suggesting that STAG1 might be a direct molecular target in the carcinogenetic process. Thus its overexpression might be regarded not only as a tumor marker but also as a potentially pathogenetic event.
British Journal of Cancer | 2000
Giuseppe Giannini; C J Kim; L Di Marcotullio; G Manfioletti; Beatrice Cardinali; Fabio Cerignoli; Elisabetta Ristori; Massimo Zani; Luigi Frati; Isabella Screpanti; Alberto Gulino
HMGI and HMGY are splicing variants of the HMGI(Y) gene and together with HMGI-C, belong to a family of DNA binding proteins involved in maintaining active chromatin conformation and in the regulation of gene transcription. The expression of the HMGI(Y) gene is maximal during embryonic development, declines in adult differentiated tissues and is reactivated in most transformed cells in vitro and in many human cancers in vivo. The HMGI(Y) genomic locus is frequently rearranged in mesenchymal tumours, suggesting a biological role for HMGI(Y) gene products in tumour biology. HMGIs are both target and modulators of retinoic acid activity. In fact, HMGI(Y) gene expression is differentially regulated by retinoic acid in retinoid-sensitive and -resistant neuroblastoma cells, while HMGI-C participates in conferring retinoic acid resistance in some neuroblastoma cells. In this paper we show that HMGI and HMGY isoforms are equally regulated by retinoic acid in neuroblastoma cell lines at both RNA and protein levels. More importantly our immunohistochemical analysis shows that, although HMGI(Y) is expressed in all neuroblastic tumours, consistently higher levels are observed in less differentiated neuroblastomas compared to more differentiated ganglioneuromas, indicating that HMGI(Y) expression should be evaluated as a potential diagnostic and prognostic marker in neuroblastic tumours.
Breast Cancer Research and Treatment | 2007
Amelia Buffone; Carlo Capalbo; Enrico Ricevuto; Tina Sidoni; Laura Ottini; Mario Falchetti; Enrico Cortesi; Paolo Marchetti; Giovanni Scambia; Silverio Tomao; Christian Rinaldi; Massimo Zani; Sergio Ferraro; Luigi Frati; Isabella Screpanti; Alberto Gulino; Giuseppe Giannini
Germline point mutations in BRCA1 and BRCA2 genes account for about 30% of the inherited breast and ovarian cancers. Germline genomic rearrangements have been found in both BRCA1 and BRCA2 genes, but the extent to which these alterations might contribute to increasing the actual mutation detection rate is still debated. Here we screened a cohort of 112 consecutive Italian families at moderate-to-high risk for breast and/or ovarian cancer for BRCA1 and BRCA2 point mutations and genomic rearrangements. Of the 83 point mutation negative probands, two (2.4%) showed BRCA1 rearrangements, accounting for 10.5% of the BRCA1 mutations. BRCA1 del18–19 has been previously described in another Italian family, while the molecular characterization of the BRCA1 del23–24 is given here for the first time. Conversely, we failed to identify any BRCA2 rearrangements even in the hereditary breast cancer families, where we detected an higher prevalence of BRCA2 compared to BRCA1 point mutations. Our results support the idea that search for BRCA1 rearrangements should be included in the genetic screening of even moderate risk breast/ovarian cancer families. In contrast, they suggest BRCA2 rearrangements might be very rare out of the high risk families including a male breast cancer.
Endocrine-related Cancer | 2012
Sonia D'Inzeo; Arianna Nicolussi; Caterina Francesca Donini; Massimo Zani; Patrizia Mancini; Francesco Nardi; Anna Coppa
Smad proteins are the key effectors of the transforming growth factor β (TGFβ) signaling pathway in mammalian cells. Smad4 plays an important role in human physiology, and its mutations were found with high frequency in wide range of human cancer. In this study, we have functionally characterized Smad4 C324Y mutation, isolated from a nodal metastasis of papillary thyroid carcinoma. We demonstrated that the stable expression of Smad4 C324Y in FRTL-5 cells caused a significant activation of TGFβ signaling, responsible for the acquisition of transformed phenotype and invasive behavior. The coexpression of Smad4 C324Y with Smad4 wild-type determined an increase of homo-oligomerization of Smad4 with receptor-regulated Smads and a lengthening of nuclear localization. FRTL-5 clones overexpressing Smad4 C324Y showed a strong reduction of response to antiproliferative action of TGFβ1, acquired the ability to grow in anchorage-independent conditions, showed a fibroblast-like appearance and a strong reduction of the level of E-cadherin, one crucial event of the epithelial-mesenchymal transition process. The acquisition of a mesenchymal phenotype gave the characteristics of increased cellular motility and a significant reduction in adhesion to substrates such as fibronectin and laminin. Overall, our results demonstrate that the Smad4 C324Y mutation plays an important role in thyroid carcinogenesis and can be considered as a new prognostic and therapeutic target for thyroid cancer.
Breast Cancer Research and Treatment | 2006
Giuseppe Giannini; Carlo Capalbo; Elisabetta Ristori; Enrico Ricevuto; Tina Sidoni; Amelia Buffone; Enrico Cortesi; Paolo Marchetti; Giovanni Scambia; Silverio Tomao; Christian Rinaldi; Massimo Zani; Sergio Ferraro; Luigi Frati; Isabella Screpanti; Alberto Gulino
Familial aggregations of breast/ovarian cancer cases frequently depend on BRCA1/2 pathogenic mutations. Here we counselled 120 Italian breast/ovarian cancer families and selected 73 probands for BRCA1/2 mutation screening. Through this analysis we defined the prevalence of BRCA1/2 pathogenic mutations occurring in Italian breast/ovarian cancer families, enlarged the spectrum of Italian BRCA1/2 mutations by 15% and report on the identification of 13 novel variants, including two deleterious truncating mutations and two potentially pathogenic missense mutations, on the BRCA1 and BRCA2 genes. Finally in hereditary breast cancer families with three or more female breast cancer cases we observed a low mutation prevalence and a significant association with BRCA2 mutations.
Clinical Biochemistry | 2015
Carlo Capalbo; Amelia Buffone; Marialaura Petroni; Valeria Colicchia; Sergio Ferraro; Massimo Zani; Arianna Nicolussi; Sonia D'Inzeo; Anna Coppa; Isabella Screpanti; Alberto Gulino; Giuseppe Giannini
OBJECTIVES Treatment individualization based on specific molecular biomarkers is becoming increasingly important in oncology. In colorectal cancer (CRC), the molecular characterization of RAS and BRAF mutation status for prognostic and predictive purposes is commonly performed by different validated methods. However, as the number of clinically relevant mutations to be analyzed increases, the definition of new approaches for more sensitive, rapid and economic patient selection urges. To this aim, we evaluated the Ion Semiconductor sequencing using the Ion Torrent Personal Genome Machine (IT-PGM) in our routine molecular diagnostics for CRC in comparison with the gold standard direct Sanger sequencing. DESIGN AND METHODS Formalin-fixed and paraffin-embedded tumor tissues obtained by surgery or biopsy of 66 CRCs were collected. DNA was extracted and sequenced by IT-PGM and Sanger method. RESULTS The proposed IT-PGM sequencing strategy exceeded the 500 reads of coverage for all clinically relevant RAS/BRAF amplicons in most samples and thus guaranteed optimal determination. Indeed, the frequencies and the mutational spectrum of RAS and BRAF mutations were in agreement with literature data and revealed 100% concordance between the IT-PGM and routine Sanger sequencing approaches. Turnaround time and cost evaluation indicate that the IT-PGM sequencing permits the characterization of the clinically relevant mutational spots at lower cost and turnaround time compared to Sanger sequencing and allows inclusion of additional amplicons whose characterization may acquire significance in the very next future. CONCLUSION The IT-PGM is a valid, flexible, sensitive and economical method alternative to the Sanger sequencing in routine diagnostics to select patients for anti-epidermal growth factor receptor therapy for metastatic CRC.
European Journal of Human Genetics | 2006
Carlo Capalbo; Enrico Ricevuto; Annarita Vestri; Tina Sidoni; Amelia Buffone; Enrico Cortesi; Paolo Marchetti; Giovanni Scambia; Silverio Tomao; Christian Rinaldi; Massimo Zani; Sergio Ferraro; Luigi Frati; Isabella Screpanti; Alberto Gulino; Giuseppe Giannini
Inherited mutations of the BRCA1/2 genes confer a significantly increased risk for breast and/or ovarian cancer development. Several models were elaborated to help genetic counsellors in selecting individuals with high probability of being mutation carriers. The IC software, a country-customized version of the Brcapro model, was recently shown to be particularly accurate in the prediction of carrier probability status in the Italian population. Here, we used our independent series of 70 breast/ovarian cancer families to analyze the performances of the IC software and compare it to widely used models, such as Brcapro and the Myriad mutation prevalence tables. Analysis of the areas under the receiver operator characteristics (ROC) curves indicated that overall the models performed well. However, the IC software and Myriad tables were more efficient in predicting mutated cases, showing a higher sensitivity (94 and 88%, respectively) and negative predictive value (NPV, 94 and 92%, respectively) compared to Brcapro (sensitivity 71 and NPV 83%). IC software also appeared particularly accurate in the identification of families belonging the low mutation risk group (<10%). Finally, most Brcapro failures occurred in the hereditary breast cancer (HBC) family subset, and in 75% of the cases, the IC software corrected them. Our data suggest that the country-customized implementation operated on the Brcapro software generated a more accurate tool for the prediction of BRCA1/2 gene mutation. Whether the IC or other country-customized models might improve BRCA1/2 mutation prediction also in non-Italian families needs to be further explored.
Biomarker research | 2015
Evelina Miele; Angela Mastronuzzi; Agnese Po; Andrea Carai; Vincenzo Alfano; Annalisa Serra; Giovanna Stefania Colafati; Luisa Strocchio; Manila Antonelli; Francesca R. Buttarelli; Massimo Zani; Sergio Ferraro; Amelia Buffone; Alessandra Vacca; Isabella Screpanti; Felice Giangaspero; Giuseppe Giannini; Franco Locatelli; Elisabetta Ferretti
AbstractFanconi Anemia (FA) is an inherited disorder characterized by the variable presence of multiple congenital somatic abnormalities, bone marrow failure and cancer susceptibility. Medulloblastoma (MB) has been described only in few cases of FA with biallelic inactivation in the tumor suppressor gene BRCA2/FANCD1 or its associated gene PALB2/FANCN. We report the case of a patient affected by Fanconi Anemia with Wilms tumor and unusual presentation of two medulloblastomas (MB1 and MB2). We identified a new pathogenetic germline BRCA2 mutation: c.2944_2944delA. Molecular analysis of MBs allowed us to define new features of MB in FA. MBs were found to belong to the Sonic Hedgehog (SHH) molecular subgroup with some differences between MB1 and MB2. We highlighted that MB in FA could share molecular aspects and hemispheric localization with sporadic adult SHH-MB. Our report provides new findings that shed new light on the genetic and molecular pathogenesis of MB in FA patients with implications in the disease management.
Journal of Biological Chemistry | 1997
Giuseppe Giannini; Lucia Di Marcotullio; Francesca Zazzeroni; Edoardo Alesse; Massimo Zani; Anne T'Ang; Vincenzo Sorrentino; Isabella Screpanti; Luigi Frati; Alberto Gulino
Transforming growth factor type β (TGFβ) is a pleiotropic factor that regulates different cellular activities including cell growth, differentiation, and extracellular matrix deposition. All the known effects of TGFβ appear to be mediated by its interaction with cell surface receptors that possess a serine/threonine kinase activity. However, the intracellular signals that follow receptor activation and lead to the different cellular responses to TGFβ are still largely unknown. On the basis of the different sensitivity to the protein kinase inhibitor 2-aminopurine and the phosphatase inhibitor okadaic acid, we identified two distinct pathways through which TGFβ activates a genomic response. Consistently, 2-aminopurine prevented and okadaic acid potentiated the induction of JE by TGFβ. The induction of PAI-1 and junB was instead potentiated by 2-aminopurine, after a transient inhibition and was unaffected by okadaic acid. The superinducing effect of 2-aminopurine required the presence of a functional RB protein since it was abolished in SV40 large T antigen-transfected cells, absent in the BT549 and Saos-2 RB-defective cell lines, and restored in BT549 and Saos-2 cells after reintroduction of pRB. The effects of 2-aminopurine on the TGFβ inducible junB expression occur in all the cell lines examined suggesting that junB, and possibly other genes, can be regulated by TGFβ through a distinct pRB-dependent pathway.