Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mat Page is active.

Publication


Featured researches published by Mat Page.


Astronomy and Astrophysics | 2002

X-ray background measurements with XMM-Newton EPIC

D. Lumb; R. S. Warwick; Mat Page; A. De Luca

We discuss the methods used to compile a high signal-to-noise dataset representative of both the instrumental and cosmic background signal measured at high galactic latitude by the XMM-Newton EPIC cameras. The characteristics of the EPIC background are described and the potential applications of the de- rived dataset in general science analysis are outlined. In the case of the cosmic X-ray background, the tran- sition between a hard power-law spectrum (due to the integrated emission of unresolved, largely extragalac- tic, point sources) and a softer thermal spectrum (produced by hot plasma associated with the Galactic plane and halo) is unambiguously detected around 1 keV. We derive a value for the intensity of the power-law component of 2:15 0:26 10 11 erg cm 2 s 1 deg 2 in the 2{10 keV band (normalisation at 1 keV of 11.1 photons cm 2 s 1 sr 1 keV 1 ). The implication is that recent, very deep Chandra observations have re- solved70{90% of the 2{10 keV background into discrete sources. Our measurement is towards the higher end of the range of quoted background normalisations.


Astronomy and Astrophysics | 2001

XMM-Newton observation of the Lockman hole: I. the x-ray data

G. Hasinger; B. Altieri; M. Arnaud; X. Barcons; Jacqueline Bergeron; H. Brunner; M. Dadina; K. Dennerl; P. Ferrando; Alexis Finoguenov; Richard E. Griffiths; Yasuhiro Hashimoto; F. Jansen; D. Lumb; K. O. Mason; S. Mateos; Richard G. McMahon; Takamitsu Miyaji; Frits Paerels; Mat Page; Af Ptak; Timothy P. Sasseen; N. Scharte; Gyula Pal Szokoly; J. Trümper; Martin J. L. Turner; R. S. Warwick; M. G. Watson

We report on the first deep X-ray survey with the XMM-Newton observatory during the performance verification phase. The field of the Lockman Hole, one of the best studied sky areas over a very wide range of wavelengths, has been observed. A total of ~100 ksec good exposure time has been accumulated. Combining the images of the European Photon Imaging Camera (EPIC) detectors we reach a flux limit of 0.31, 1.4 and


Astronomy and Astrophysics | 2010

HerMES: The SPIRE confusion limit

H. T. Nguyen; Bernhard Schulz; L. Levenson; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou

2.4 10^{-15} {\rm erg} {\rm cm}^{-2} {\rm s}^{-1}


Publications of the Astronomical Society of the Pacific | 2010

The Herschel Reference Survey

A. Boselli; Stephen Anthony Eales; Luca Cortese; G. J. Bendo; P. Chanial; V. Buat; Jonathan Ivor Davies; Robbie Richard Auld; E. Rigby; M. Baes; M. J. Barlow; James J. Bock; M. Bradford; N. Castro-Rodriguez; S. Charlot; D. L. Clements; D. Cormier; E. Dwek; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony; Kate Gudrun Isaak; L. Levenson; N. Lu; S. Madden

, respectively in the 0.5-2, 2-10, and 5-10 keV band. Within an off-axis angle of 10 arcmin we detect 148, 112 and 61 sources, respectively. The log( N )-log( S ) relation in the three bands is compared with previous results. In particular in the 5-10 keV band these observations present the deepest X-ray survey ever, about a factor 20 more sensitive than the previous BeppoSAX observations. Using X-ray spectral diagnostics and the set of previously known, spectroscopically identified ROSAT sources in the field, the new sources can be classified. XMM-Newton detects a significant number (~40% ) of X-ray sources with hard, probably intrinsically absorbed X-ray spectra, confirming a prediction of the population synthesis models for the X-ray background.


Monthly Notices of the Royal Astronomical Society | 2008

The star formation history of the Universe as revealed by deep radio observations

N. Seymour; T. Dwelly; D. Moss; I. M. McHardy; A. Zoghbi; G. H. Rieke; Mat Page; Andrew M. Hopkins; Nicola S. Loaring

We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.


Astronomy and Astrophysics | 2010

The Herschel Space Observatory view of dust in M81

G. J. Bendo; C. D. Wilson; Michael Pohlen; Marc Sauvage; Robbie Richard Auld; M. Baes; M. J. Barlow; J. J. Bock; A. Boselli; M. Bradford; V. Buat; N. Castro-Rodriguez; P. Chanial; S. Charlot; L. Ciesla; D. L. Clements; A. Cooray; D. Cormier; Luca Cortese; Jonathan Ivor Davies; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony

The Herschel Reference Survey is a Herschel guaranteed time key project and will be a benchmark study of dust in the nearby universe. The survey will complement a number of other Herschel key projects including large cosmological surveys that trace dust in the distant universe. We will use Herschel to produce images of a statistically-complete sample of 323 galaxies at 250, 350, and 500 μm. The sample is volume-limited, containing sources with distances between 15 and 25 Mpc and flux limits in the K band to minimize the selection effects associated with dust and with young high-mass stars and to introduce a selection in stellar mass. The sample spans the whole range of morphological types (ellipticals to late-type spirals) and environments (from the field to the center of the Virgo Cluster) and as such will be useful for other purposes than our own. We plan to use the survey to investigate (i) the dust content of galaxies as a function of Hubble type, stellar mass, and environment; (ii) the connection between the dust content and composition and the other phases of the interstellar medium; and (iii) the origin and evolution of dust in galaxies. In this article, we describe the goals of the survey, the details of the sample and some of the auxiliary observing programs that we have started to collect complementary data. We also use the available multifrequency data to carry out an analysis of the statistical properties of the sample.


web science | 2010

The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images

Seb Oliver; Martin Kunz; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox

Discerning the exact nature of the sub-mJy radio population has been historically difficult due to the low luminosity of these sources at most wavelengths. Using deep ground based optical follow-up and observations from the Spitzer Space Telescope we are able to disentangle the radio-selected active galactic nuclei (AGN) and star-forming galaxy (SFG) populations for the first time in a deep multifrequency VLA/MERLIN Survey of the 13^H XMM Newton/Chandra Deep Field. The discrimination diagnostics include radio morphology, radio spectral index, radio/near-infrared (near-IR) and mid-IR/radio flux density ratios. We are nowable to calculate the extragalactic Euclidean normalized source counts separately for AGN and SFGs. We find that while SFGs dominate at the faintest flux densities and account for the majority of the upturn in the counts, AGN still make up around one quarter of the counts at ∼50 μJy (1.4 GHz). Using radio luminosity as an unobscured star formation rate (SFR) measure we are then able to examine the comoving SFR density of the Universe up to z = 3 which agrees well with measures at other wavelengths. We find a rough correlation of SFR with stellar mass for both the sample presented here and a sample of local radio-selected SFGs from the 6df-NVSS survey. This work also confirms the existence of, and provides alternative evidence for, the evolution of distribution of star formation by galaxy mass: ‘downsizing’. As both these samples are SFR-selected, this result suggests that there is a maximum SFR for a given galaxy that depends linearly on its stellar mass. The low ‘characteristic times’ (inverse specific SFR) of the SFGs in our sample are similar to those of the 6dF-NVSS sample, implying that most of these sources are in a current phase of enhanced star formation.


Monthly Notices of the Royal Astronomical Society | 2013

The Herschel census of infrared SEDs through cosmic time

M. Symeonidis; M. Vaccari; S. Berta; Mat Page; D. Lutz; V. Arumugam; H. Aussel; J. J. Bock; A. Boselli; V. Buat; P. Capak; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; D. Farrah; A. Franceschini; E. Giovannoli; J. Glenn; Matthew Joseph Griffin; E. Hatziminaoglou; Ho Seong Hwang; E. Ibar; O. Ilbert; R. J. Ivison; E. Le Floc'h; S. J. Lilly; J. Kartaltepe; B. Magnelli

We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70–500 μm in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 μm are primarily dependent on radius but that the ratio of 70 to 160 μm emission shows no clear dependence on surface brightness or radius. These results along with analyses of the spectral energy distributions imply that the 160–500 μm emission traces 15–30 K dust heated by evolved stars in the bulge and disc whereas the 70 μm emission includes dust heated by the active galactic nucleus and young stars in star forming regions.


The Astrophysical Journal | 2012

THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). II. DUST AND GAS IN ANDROMEDA

Matthew William L. Smith; Stephen Anthony Eales; Haley Louise Gomez; Julia Roman-Duval; J. Fritz; R. Braun; M. Baes; G. J. Bendo; J. A. D. L. Blommaert; M. Boquien; A. Boselli; D. L. Clements; A. Cooray; Luca Cortese; I. De Looze; G.P. Ford; Walter Kieran Gear; Gianfranco Gentile; Karl D. Gordon; Jason M. Kirk; V. Lebouteiller; S. Madden; E. Mentuch; B. O’Halloran; Mat Page; B. Schulz; L. Spinoglio; J. Verstappen; C. D. Wilson; David Allan Thilker

We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m.


Astronomy and Astrophysics | 2014

The evolution of the dust temperatures of galaxies in the SFR–M∗ plane up to z ~ 2

B. Magnelli; D. Lutz; A. Saintonge; S. Berta; P. Santini; M. Symeonidis; B. Altieri; P. Andreani; H. Aussel; M. Béthermin; J. J. Bock; A. Bongiovanni; J. Cepa; A. Cimatti; A. Conley; E. Daddi; D. Elbaz; N. M. Förster Schreiber; R. Genzel; R. J. Ivison; G. Magdis; R. Maiolino; R. Nordon; Seb Oliver; Mat Page; A. M. Pérez García; A. Poglitsch; P. Popesso; F. Pozzi; L. Riguccini

Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS, GOODS-S and GOODS-N, we examine the dust properties of infrared (IR)-luminous (LIR > 1010 L⊙) galaxies at 0.1 45 K) SEDs and cold (T < 25 K), cirrus-dominated SEDs are rare, with most sources being within the range occupied by warm starbursts such as M82 and cool spirals such as M51. We observe a luminosity–temperature (L-T) relation, where the average dust temperature of log [LIR/L⊙] ∼ 12.5 galaxies is about 10 K higher than that of their log [LIR/L⊙] ∼ 10.5 counterparts. However, although the increased dust heating in more luminous systems is the driving factor behind the L-T relation, the increase in dust mass and/or starburst size with luminosity plays a dominant role in shaping it. Our results show that the dust conditions in IR-luminous sources evolve with cosmic time: at high redshift, dust temperatures are on average up to 10 K lower than what is measured locally (z ≲ 0.1). This is manifested as a flattening of the L-T relation, suggesting that (ultra)luminous infrared galaxies [(U)LIRGs] in the early Universe are typically characterized by a more extended dust distribution and/or higher dust masses than local equivalent sources. Interestingly, the evolution in dust temperature is luminosity dependent, with the fraction of LIRGs with T < 35 K showing a two-fold increase from z ∼ 0 to z ∼ 2, whereas that of ULIRGs with T < 35 K shows a six-fold increase. Our results suggest a greater diversity in the IR-luminous population at high redshift, particularly for ULIRGs.

Collaboration


Dive into the Mat Page's collaboration.

Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Glenn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

J. J. Bock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Boselli

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

P. Chanial

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

A. Conley

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

D. Burgarella

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

V. Buat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Franceschini

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge