Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mataz Alcoutlabi is active.

Publication


Featured researches published by Mataz Alcoutlabi.


Energy and Environmental Science | 2011

Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries

Liwen Ji; Zhan Lin; Mataz Alcoutlabi; Xiangwu Zhang

In this paper, the use of nanostructured anode materials for rechargeable lithium-ion batteries (LIBs) is reviewed. Nanostructured materials such as nano-carbons, alloys, metal oxides, and metal sulfides/nitrides have been used as anodes for next-generation LIBs with high reversible capacity, fast power capability, good safety, and long cycle life. This is due to their relatively short mass and charge pathways, high transport rates of both lithium ions and electrons, and other extremely charming surface activities. In this review paper, the effect of the nanostructure on the electrochemical performance of these anodes is presented. Their synthesis processes, electrochemical properties, and electrode reaction mechanisms are also discussed. The major goals of this review are to give a broad overview of recent scientific researches and developments of anode materials using novel nanoscience and nanotechnology and to highlight new progresses in using these nanostructured materials to develop high-performance LIBs. Suggestions and outlooks on future research directions in this field are also given.


Journal of Physics: Condensed Matter | 2005

Effects of confinement on material behaviour at the nanometre size scale

Mataz Alcoutlabi; Gregory B. McKenna

In this article, the effects of size and confinement at the nanometre size scale on both the melting temperature, Tm, and the glass transition temperature, Tg, are reviewed. Although there is an accepted thermodynamic model (the Gibbs–Thomson equation) for explaining the shift in the first-order transition, Tm, for confined materials, the depression of the melting point is still not fully understood and clearly requires further investigation. However, the main thrust of the work is a review of the field of confinement and size effects on the glass transition temperature. We present in detail the dynamic, thermodynamic and pseudo-thermodynamic measurements reported for the glass transition in confined geometries for both small molecules confined in nanopores and for ultrathin polymer films. We survey the observations that show that the glass transition temperature decreases, increases, remains the same or even disappears depending upon details of the experimental (or molecular simulation) conditions. Indeed, different behaviours have been observed for the same material depending on the experimental methods used. It seems that the existing theories of Tg are unable to explain the range of behaviours seen at the nanometre size scale, in part because the glass transition phenomenon itself is not fully understood. Importantly, here we conclude that the vast majority of the experiments have been carried out carefully and the results are reproducible. What is currently lacking appears to be an overall view, which accounts for the range of observations. The field seems to be experimentally and empirically driven rather than responding to major theoretical developments.


Macromolecular Bioscience | 2009

Rheological properties of cross-linked hyaluronan-gelatin hydrogels for tissue engineering.

Janssen L. Vanderhooft; Mataz Alcoutlabi; Jules J. Magda; Glenn D. Prestwich

Hydrogels that mimic the natural extracellular matrix (ECM) are used in three-dimensional cell culture, cell therapy, and tissue engineering. A semi-synthetic ECM based on cross-linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross-linking density were the main determinants of gel stiffness. Increase in the ratio of thiol-modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component.


ACS Applied Materials & Interfaces | 2012

α-Fe2O3 Nanoparticle-Loaded Carbon Nanofibers as Stable and High-Capacity Anodes for Rechargeable Lithium-Ion Batteries

Liwen Ji; Ozan Toprakci; Mataz Alcoutlabi; Yingfang Yao; Ying Li; Shu Zhang; Bingkun Guo; Zhan Lin; Xiangwu Zhang

α-Fe(2)O(3) nanoparticle-loaded carbon nanofiber composites were fabricated via electrospinning FeCl(3)·6H(2)O salt-polyacrylonitrile precursors in N,N-dimethylformamide solvent and the subsequent carbonization in inert gas. Scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and elemental analysis were used to study the morphology and composition of α-Fe(2)O(3)-carbon nanofiber composites. It was indicated that α-Fe(2)O(3) nanoparticles with an average size of about 20 nm have a homogeneous dispersion along the carbon nanofiber surface. The resultant α-Fe(2)O(3)-carbon nanofiber composites were used directly as the anode material in rechargeable lithium half cells, and their electrochemical performance was evaluated. The results indicated that these α-Fe(2)O(3)-carbon nanofiber composites have high reversible capacity, good capacity retention, and acceptable rate capability when used as anode materials for rechargeable lithium-ion batteries.


Polymer Reviews | 2011

Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries

Xiangwu Zhang; Liwen Ji; Ozan Toprakci; Yinzheng Liang; Mataz Alcoutlabi

Novel nanofiber technologies present the opportunity to design new materials for advanced rechargeable lithium-ion batteries. Among the various existing energy storage technologies, rechargeable lithium-ion batteries are considered as effective solution to the increasing need for high-energy electrochemical power sources. This review addresses using electrospinning technology to develop novel composite nanofibers which can be used as anodes, cathodes, and separators for lithium-ion batteries. The discussion focuses on the preparation, structure, and performance of silicon/carbon (Si/C) nanofiber anodes, lithium iron phosphate/carbon (LiFePO4/C) nanofiber cathodes, and lithium lanthanum titanate oxide/polyacrylonitrile (LLTO/PAN) nanofiber separators. Si/C nanofiber anodes have the advantages of both carbon (long cycle life) and Si (high lithium-storage capacity). LiFePO4/C nanofiber cathodes show good electrochemical performance including satisfactory capacity and good cycling stability. LLTO/PAN nanofiber separators have large electrolyte uptake, high ionic conductivity, and low interfacial resistance with lithium, which increase the capacity and improve the cycling stability of lithium-ion cells. These results demonstrate that electrospinning is a promising approach to prepare high-performance nanofiber anodes, nanofiber cathodes, and nanofiber separators that can potentially replace currently-used lithium-ion battery materials.


Polymer | 1998

Application of fractional calculus to viscoelastic behaviour modelling and to the physical ageing phenomenon in glassy amorphous polymers

Mataz Alcoutlabi; J.J. Martinez-Vega

Abstract A model based on the concept of fractional calculus is proposed to predict the viscoelastic behaviour of amorphous polymers in the temperature range from T g −190°C to T g +25°C. Poly methyl methacrylate (PMMA) has been chosen as a model amorphous polymer. PMMA has been studied by dynamic mechanical spectrometry and the experimental data have been compared with the fractional calculus model proposed. An agreement between experiments and model has been achieved. PMMA is characterised by an unstable non-equilibrium state, at least between the main secondary relaxation ( β ) and the main relaxation ( α ). All molecular mobility phenomena are affected by this structural recovery that itself exists because of molecular mobility. One of the objectives of this work is to give some ideas of this important phenomenon and quantify its influence on the parameters of the viscoelastic model proposed.


RSC Advances | 2012

Electrospun carbon nanofibers decorated with various amounts of electrochemically-inert nickel nanoparticles for use as high-performance energy storage materials

Liwen Ji; Zhan Lin; Mataz Alcoutlabi; Ozan Toprakci; Yingfang Yao; Guanjie Xu; Shuli Li; Xiangwu Zhang

Carbon nanofibers decorated with various amounts of electrochemically-inert metallic nickel nanoparticles are synthesized through electrospinning and carbonization processes. The morphology and composition of Ni nanoparticles in carbon nanofibers are controlled by preparing different nanofiber precursors. The lithium-ion battery performance evaluations indicated that the content of electrochemically-inert Ni nanoparticles in carbon nanofibers has a great influence on the final electrochemical performance. For example, at certain Ni contents, these composite nanofibers display excellent electrochemical performance, such as high reversible capacities, good capacity retention, and excellent rate performance, when directly used as binder-free anodes for rechargeable lithium-ion batteries. However, when the Ni content is too low or too high, the corresponding electrodes show low reversible capacities although they still have good reversibility and rate performance.


Journal of Materials Science | 2013

Preparation and properties of nanofiber-coated composite membranes as battery separators via electrospinning

Mataz Alcoutlabi; Hun Lee; Jill V. Watson; Xiangwu Zhang

An electrospun nanofiber-coated Celgard® 2400 polypropylene microporous battery separator was prepared using polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-co-chlorotrifluoroethylene (PVDF-co-CTFE). The coating of PVDF and PVDF-co-CTFE nanofibers was carried out using single nozzle and nozzle-less electrospinning methods. The nanofiber coating prepared by the nozzle-less electrospinning method was found to have better adhesion to the microporous separator membrane than the nanofiber coating prepared by single nozzle electrospinning. The PVDF and PVDF-co-CTFE nanofiber coatings increased the electrolyte uptake capacity in a secondary lithium-ion battery, with PVDF-co-CTFE co-polymer nanofiber-coated microporous membrane showing higher electrolyte uptake capacity than PVDF homopolymer-coated microporous membrane. In addition, the PVDF and PVDF-co-CTFE nanofiber coatings improved the adhesion of the porous microporous membrane to a battery electrode. It was also found that nanofiber coatings prepared by the nozzle-less electrospinning method have better adhesion properties and higher electrolyte uptake capacity than those by single nozzle electrospinning.


ACS Applied Materials & Interfaces | 2011

Sulfonated Polystyrene Fiber Network-Induced Hybrid Proton Exchange Membranes

Yingfang Yao; Liwen Ji; Zhan Lin; Ying Li; Mataz Alcoutlabi; Hechmi Hamouda; Xiangwu Zhang

A novel type of hybrid membrane was fabricated by incorporating sulfonated polystyrene (S-PS) electrospun fibers into Nafion for the application in proton exchange membrane fuel cells. With the introduction of S-PS fiber mats, a large amount of sulfonic acid groups in Nafion aggregated onto the interfaces between S-PS fibers and the ionomer matrix, forming continuous pathways for facile proton transport. The resultant hybrid membranes had higher proton conductivities than that of recast Nafion, and the conductivities were controlled by selectively adjusting the fiber diameters. Consequently, hybrid membranes fabricated by ionomers, such as Nafion, incorporated with ionic-conducting nanofibers established a promising strategy for the rational design of high-performance proton exchange membranes.


Journal of Rheology | 2006

The effect of the shear-thickening transition of model colloidal spheres on the sign of N1 and on the radial pressure profile in torsional shear flows

M. Lee; Mataz Alcoutlabi; Jules J. Magda; C. Dibble; M. J. Solomon; X. Shi; Gregory B. McKenna

A novel rheometer plate was used to measure radial pressure profiles during cone-and-plate and parallel-plate shearing flows of a concentrated colloidal dispersion of poly(methyl methacryalate) spheres suspended in dioctyl phthalate. There is a long history of using suspensions of this type as a model rheological system. The measured pressure profile can be used to calculate N1 and N2, and also provides a check on the flow field in the rheometer. At shear rates just below onset of shear thickening, our measurements show that N1 is positive as predicted by Stokesian dynamics simulations of model Brownian hard spheres, but we are unable to determine the sign of N2. After the onset of thickening, we find that in both flow geometries the pressure increases sharply with radial position. This is in striking contrast to the pressure profiles ordinarily observed for viscoelastic liquids (with the exception of certain liquid crystal polymers), for which the pressure decreases with radial position. Under these cond...

Collaboration


Dive into the Mataz Alcoutlabi's collaboration.

Top Co-Authors

Avatar

Xiangwu Zhang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Agubra

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liwen Ji

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Luis Zuniga

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Zhan Lin

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ozan Toprakci

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Yingfang Yao

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge