Mate Gaal
Bundesanstalt für Materialforschung und -prüfung
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mate Gaal.
Journal of Applied Physics | 2012
Joachim Döring; Viktor Bovtun; Mate Gaal; Jürgen Bartusch; Anton Erhard; Marc Kreutzbruck; Yuriy Yakymenko
Electromechanical response of polypropylene ferroelectret transducers under application of high-voltage pulses was measured by laser Doppler vibrometry and compared with results of ultrasonic through-air transmission between two ferroelectret transducers. The electromechanical response was completely explained by piezoelectric and electrostrictive effects. The electrostrictive effect dominates at high voltages and provides significant enlargement of the transducer constant, up to factor of 2.5. The induced strain of 1.7% was achieved at −2000 V. The nonlinear ultrasonic transmission was shown to be well described by the piezoelectric and electrostrictive response of transmitter, except in the range of high negative exciting voltages where some limitation of the transmitted signal was observed. This limitation seems not to be a fundamental one and does not abolish the advantages of high-voltage excitation of polypropylene ferroelectret transducers.
42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 6th European-American Workshop on Reliability of NDE | 2016
Mate Gaal; Jürgen Bartusch; Elmar Dohse; Florian Schadow; Enrico Köppe
Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on met...
Tm-technisches Messen | 2015
Maxim Daschewski; Marc Kreutzbruck; Jens Prager; Elmar Dohse; Mate Gaal; Andrea Harrer
Zusammenfassung In diesem Beitrag präsentieren wir innovative Methoden für die breitbandige und resonanzfreie Messung und Anregung von Ultraschall. Das Messverfahren verwendet eine Kunststofffolie und ein Laser-Vibrometer als breitbandigen und resonanzfreien Empfänger. Im Allgemeinen ermöglicht dieses Verfahren eine präzise Messung der Schallschnelle und des Schalldruckes in beliebigen, für das Laserlicht transparenten Flüssigkeiten und Gasen mit bekannter Dichte und Schallgeschwindigkeit. Das resonanzfreie Senden von Ultraschall basiert auf einem elektro-thermo-akustischen Wandlerprinzip und ermöglicht, im Gegensatz zu herkömmlichen Ultraschallwandlern, die Erzeugung von beliebig geformten akustischen Signalen ohne Resonanzen und ohne Nachschwingen.
Advances in Applied Ceramics | 2013
Viktor Bovtun; Joachim Döring; Jürgen Bartusch; Mate Gaal; Anton Erhard; Marc Kreutzbruck; Yuriy Yakymenko
Abstract Abstract Polypropylene based ferroelectret films exhibit a strong electromechanical activity and provide a promising solution for the air coupled ultrasonic (ACUS) transducers. Ultrasonic transmission between two air coupled ferroelectret transducers in dependence on the amplitude and polarity of the high voltage exciting pulse revealed a strongly non-linear electromechanical response of the ferroelectret transmitter which provides an increase in the transmitter efficiency. The authors present a simple model describing both promotion and competition of the piezoelectric and electrostriction contributions, as well as increase in the transducer constant under high voltage excitation. Enlargement of the inverse transducer constant of the polypropylene ferroelectret film by a factor of 4 was demonstrated. The non-linear properties of the polypropylene ferroelectrets result in a strong increase in their ACUS figure of merit under the high voltage excitation, which exceeds the results of their technological optimisation. Consequently, enhancement of the ACUS system transmission by 12 dB and signal to noise ratio by 32 dB was achieved.
Journal of Applied Physics | 2016
Mate Gaal; Viktor Bovtun; Wolfgang Stark; Anton Erhard; Yuriy Yakymenko; Marc Kreutzbruck
Viscoelastic properties of cellular polypropylene ferroelectrets (PP FEs) were studied at low frequencies (0.3–33 Hz) by dynamic mechanical analysis and at high frequencies (250 kHz) by laser Doppler vibrometry. Relaxation behavior of the in-plane Youngs modulus ( Y11′ ∼ 1500 MPa at room temperature) was observed and attributed to the viscoelastic response of polypropylene matrix. The out-of-plane Youngs modulus is very small ( Y33′ ≈ 0.1 MPa) at low frequencies, frequency- and stress-dependent, evidencing nonlinear viscoelastic response of PP FEs. The high-frequency mechanical response of PP FEs is shown to be linear viscoelastic with Y33′ ≈ 0.8 MPa. It is described by thickness vibration mode and modeled as a damped harmonic oscillator with one degree of freedom. Frequency dependence of Y33* in the large dynamic strain regime is described by the broad Cole-Cole relaxation with a mean frequency in kHz range attributed to the dynamics of the air flow between partially closed air-filled voids in PP FEs. ...
REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: VOLUME 32 | 2013
Mate Gaal; Joachim Döring; Jürgen Bartusch; Thorid Lange; W. Hillger; Gerhard Brekow; Marc Kreutzbruck
Ferroelectrets are promising materials for air-coupled ultrasonic transducers. A transducer made of polarized cellular polypropylene, including its electronic interface, was developed and compared with conventional air-coupled probes. Test pieces of fiber-reinforced polymer containing impact flaws and flat-bottom holes were inspected in transmission. The ferroelectret transducers achieved a considerably higher signal-to-noise ratio. The impacts were clearly visible with all transducers, but less noisy with ferroelectret transducers. The flat-bottom holes were better detectable than with a conventional probe with about the same focus size.
40TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 10th International Conference on Barkhausen Noise and Micromagnetic Testing | 2014
Mate Gaal; Jürgen Bartusch; Elmar Dohse; Marc Kreutzbruck; Jay Amos
Adhesively bonded aluminum components have been widely used in the aerospace industry for weight-efficient and damage-tolerant structures. Automated squirter jet immersion ultrasonic testing is a common inspection technique to assure the bond integrity of large, contoured assemblies. However, squirter jet inspection presents several limitations in scanning speed, related to water splash noise over protruding stiffeners and splash interference crosstalk in multi-channel inspection systems. Air-coupled ultrasonic testing has been evaluated as an alternative, possibly offering the benefits of increased throughput by enabling higher speeds, and eliminating the contamination concerns and maintenance issues of water couplant systems. Adhesive joints of multi-layer aluminum plates with artificial disbonds were inspected with novel air-coupled ultrasonic probes based on cellular polypropylene. Disbonds of various sizes were engineered in several multi-layer configurations and at various depths. Results were compa...
Materials Testing-Materials and Components Technology and Application | 2013
Joachim Döring; Jürgen Bartusch; Mate Gaal; Marc Kreutzbruck; Anton Erhard; Viktor Bovtun
Kurzfassung Für die luftgekoppelte Ultraschall-Prüfung wird der Prototyp eines neuartigen Prüfkopfes vorgestellt. Statt eines piezokeramischen Ultraschall-Wandlers mit einer λ/4-Anpassschicht wird eine Ferroelektret-Folie aus schaumförmigem Polypropylen eingesetzt. Durch die außerordentlich geringe akustische Impedanz der Folie reduzieren sich die Reflexionsverluste an den Grenzschichten zur Luft so stark, dass bei diesem Prüfkopf auf eine λ/4-Anpassschicht verzichtet werden kann. Außerdem ist die Folie hochspannungsfest. Sie konnte mit Spannungen von mehr als 3500 V angesteuert werden und erlaubte eine Vorspannung am Ultraschall-Wandler des Empfangsprüfkopfes von 2000 V. Mithilfe der hohen Anregungsspannung stieg die Amplitude des akustischen Prüfimpulses auf das 11,2-Fache. Die Empfindlichkeit des Empfängers erhöhte sich durch die Vorspannung weiter um den Faktor 4,3. Insgesamt steigt die Amplitude am Empfänger also auf das 48-Fache, bei gleichbleibendem Rauschpegel. Ein abschließender Vergleich mit kommerziellen Luftultraschall-Prüfköpfen belegt die Überlegenheit der Folien-Prüfköpfe. Damit rückt der Einsatz einer vollwertigen Impuls-Echo-Technik auch bei der luftgekoppelten Ultraschallprüfung deutlich näher.
Applied Physics Letters | 2018
Daniel Kotschate; Mate Gaal; Holger Kersten
We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investi-gated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.
Archive | 2017
Mate Gaal; Rui Caldeira; Jürgen Bartusch; Mario Kupnik
Highly sensitive air-coupled ultrasonic sensors are essential for various applications such as testing of composite materials. One of the major challenges for the development of air-coupled ultrasonic sensors is the impedance matching to air. With a lower acoustic impedance than the usual piezoelectric materials, charged cellular polypropylene film (cPP) offers better matching to air with a similar piezoelectric coefficient. The piezoelectric behaviour demonstrated by cPP comes from polarized air cells that create a permanent internal voltage. The sensitivity of the sensor varies with the application of an additional DC bias voltage. Thus, this work presents a cPP ultrasonic sensor with an improvement of up to 15 ± 1 dB on the signal-to-noise ratio.