Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matei Georgescu is active.

Publication


Featured researches published by Matei Georgescu.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Urban adaptation can roll back warming of emerging megapolitan regions.

Matei Georgescu; Philip E. Morefield; Britta G. Bierwagen; Christopher P. Weaver

Significance Conversion to urban landforms has consequences for regional climate and the many inhabitants living within the built environment. The purpose of our investigation was to explore hydroclimatic impacts of 21st century urban expansion across the United States and examine the efficacy of commonly proposed urban adaptation strategies in context of long-term global climate change. We show that, in the absence of any adaptive urban design, urban expansion across the United States imparts warming over large regional swaths of the country that is a significant fraction of anticipated temperature increases resulting from greenhouse gas-induced warming. Adapting to urban-induced climate change is geographically dependent, and the robust analysis that we present offers insights into optimal approaches and anticipated tradeoffs associated with varying expansion pathways. Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Direct climate effects of perennial bioenergy crops in the United States

Matei Georgescu; David B. Lobell; Christopher B. Field

Biomass-derived energy offers the potential to increase energy security while mitigating anthropogenic climate change, but a successful path toward increased production requires a thorough accounting of costs and benefits. Until recently, the efficacy of biomass-derived energy has focused primarily on biogeochemical consequences. Here we show that the biogeophysical effects that result from hypothetical conversion of annual to perennial bioenergy crops across the central United States impart a significant local to regional cooling with considerable implications for the reservoir of stored soil water. This cooling effect is related mainly to local increases in transpiration, but also to higher albedo. The reduction in radiative forcing from albedo alone is equivalent to a carbon emissions reduction of , which is six times larger than the annual biogeochemical effects that arise from offsetting fossil fuel use. Thus, in the near-term, the biogeophysical effects are an important aspect of climate impacts of biofuels, even at the global scale. Locally, the simulated cooling is sufficiently large to partially offset projected warming due to increasing greenhouse gases over the next few decades. These results demonstrate that a thorough evaluation of costs and benefits of bioenergy-related land-use change must include potential impacts on the surface energy and water balance to comprehensively address important concerns for local, regional, and global climate change.


Journal of Geophysical Research | 2014

Anthropogenic heating of the urban environment due to air conditioning

Francisco Salamanca; Matei Georgescu; Alex Mahalov; Mohamed Moustaoui; M. Wang

This article investigates the effect of air conditioning (AC) systems on air temperature and examines their electricity consumption for a semiarid urban environment. We simulate a 10 day extreme heat period over the Phoenix metropolitan area (U.S.) with the Weather Research and Forecasting model coupled to a multilayer building energy scheme. The performance of the modeling system is evaluated against 10 Arizona Meteorological Network weather stations and one weather station maintained by the National Weather Service for air temperature, wind speed, and wind direction. We show that explicit representation of waste heat from air conditioning systems improved the 2 m air temperature correspondence to observations. Waste heat release from AC systems was maximum during the day, but the mean effect was negligible near the surface. However, during the night, heat emitted from AC systems increased the mean 2 m air temperature by more than 1°C for some urban locations. The AC systems modified the thermal stratification of the urban boundary layer, promoting vertical mixing during nighttime hours. The anthropogenic processes examined here (i.e., explicit representation of urban energy consumption processes due to AC systems) require incorporation in future meteorological and climate investigations to improve weather and climate predictability. Our results demonstrate that releasing waste heat into the ambient environment exacerbates the nocturnal urban heat island and increases cooling demands.


Environmental Research Letters | 2012

Seasonal hydroclimatic impacts of Sun Corridor expansion

Matei Georgescu; Alex Mahalov; Mohamed Moustaoui

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona’s Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 C). Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for hydrologic impacts in addition to continued focus on mean temperature effects.


Environmental Research Letters | 2013

Assessing summertime urban air conditioning consumption in a semiarid environment

Francisco Salamanca; Matei Georgescu; Alex Mahalov; Mohamed Moustaoui; M. Wang; B M Svoma

Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ?53% of diurnally averaged total electric demand, ranging from ?35% during early morning to ?65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.


Current Climate Change Reports | 2015

Rising Temperatures, Human Health, and the Role of Adaptation

David M. Hondula; Robert C. Balling; Jennifer K. Vanos; Matei Georgescu

There is near consensus in the scientific community that humans will experience higher future temperatures due to the ongoing accumulation of greenhouse gases in the atmosphere. The human response to this climatic change, particularly if accompanied by a surge in extreme heat events, is a key topic being addressed by scientists across many disciplines. In this article, we review recent (2012–2015) research on human health impacts of observed and projected increases in summer temperature. We find that studies based on projected changes in climate indicate substantial increases in heat-related mortality and morbidity in the future, while observational studies based on historical climate and health records show a decrease in negative impacts during recent warming. The discrepancy between the two groups of studies generally involves how well and how quickly humans can adapt to changes in climate via physiological, behavioral, infrastructural, and/or technological adaptation, and how such adaptation is quantified.


Environmental Research Letters | 2015

Prioritizing urban sustainability solutions: coordinated approaches must incorporate scale-dependent built environment induced effects

Matei Georgescu; Winston T. L. Chow; Zhi Hua Wang; Anthony J. Brazel; B Trapido-Lurie; Matthias Roth; V Benson-Lira

Because of a projected surge of several billion urban inhabitants by mid-century, a rising urgency exists to advance local and strategically deployed measures intended to ameliorate negative consequences on urban climate (e.g., heat stress, poor air quality, energy/water availability). Here we highlight the importance of incorporating scale-dependent built environment induced solutions within the broader umbrella of urban sustainability outcomes, thereby accounting for fundamental physical principles. Contemporary and future design of settlements demands cooperative participation between planners, architects, and relevant stakeholders, with the urban and global climate community, which recognizes the complexity of the physical systems involved and is ideally fit to quantitatively examine the viability of proposed solutions. Such participatory efforts can aid the development of locally sensible approaches by integrating across the socioeconomic and climatic continuum, therefore providing opportunities facilitating comprehensive solutions that maximize benefits and limit unintended consequences.


Environmental Research Letters | 2015

Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China

Qian Cao; Deyong Yu; Matei Georgescu; Zhe Han; Jianguo Wu

Assessing the impacts of land use and land cover change (LUCC) on regional climate is essential for understanding land–atmosphere interactions and for designing climate adaptation and mitigation strategies. Using the weather research and forecasting (WRF) model, we examined how different land use and land cover patterns affect regional climate in the agro-pastoral transitional zone of North China, whose environmental and socioeconomic conditions are sensitive to climate change. We parameterized WRF using land use and land cover maps corresponding to 2001 and 2010 conditions, which differ in the representation of four land surface biophysical parameters: vegetation fraction, leaf area index (LAI), albedo, and emissivity. From 2001 to 2010, vegetation fraction and LAI increased in summer, emissivity increased and albedo decreased in winter. Our WRF simulations show that differences in land use and land cover patterns led to widespread reduction in summer temperature with local cooling on the order of 1 °C, and extensive increase in winter temperature with local warming exceeding 0.8 °C. By contrast, simulations using the default landscape representation, provided by WRF itself, show only minor and random changes in temperature. Model evaluation further reveals that our simulations with appropriate land surface properties improve the performance of the WRF model. Our findings demonstrate that LUCC in Northern China has altered the regional climate over the past decade. The magnitude and spatial patterns of temperature changes quantified by our simulations provide useful information for understanding the impacts of LUCC on climate and for developing mitigation and adaptation strategies in arid and semiarid regions.


Journal of Climate | 2015

Challenges Associated with Adaptation to Future Urban Expansion

Matei Georgescu

AbstractThe most populated state in the United States, California, is projected to add millions of new inhabitants through the end of the current century, requiring considerable landscape conversion to the built environment. A suite of continuous multiyear, medium-range resolution (20-km grid spacing), ensemble-based simulations is examined to assess urban expansion climate effects on California in 2100, and potential strategies to alleviate them. Summertime [June–August (JJA)] warming due to urban expansion of 1°–2°C is greater relative to any other season, and is completely offset by a range of adaptation strategies: green roofs (highly transpiring), cool roofs (highly reflective), and hybrid roofs (with combined biophysical properties of green and cool roofs). After offsetting of urban-induced warming, cool and hybrid roofs lead to a further 1°–2°C reduction in JJA 2-m temperature, highlighting enhanced efficacy of these adaptation strategies. Guided by medium-range-resolution results, additional high-...


Science of The Total Environment | 2014

Challenges associated with projecting urbanization-induced heat-related mortality

David M. Hondula; Matei Georgescu; Robert C. Balling

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables. Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983-2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (-95%) to an increase of 339 deaths per year (+359%). Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

Collaboration


Dive into the Matei Georgescu's collaboration.

Top Co-Authors

Avatar

Alex Mahalov

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deyong Yu

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Jianguo Wu

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Qian Cao

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa Wagner

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Meng Wang

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge