Matej Supej
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matej Supej.
Journal of Sports Sciences | 2010
Matej Supej
Abstract To date, camcorders have been the device of choice for 3D kinematic measurement in human locomotion, in spite of their limitations. This study examines a novel system involving a GNSS RTK that returns a reference trajectory through the use of a suit, imbedded with inertial sensors, to reveal subject segment motion. The aims were: (1) to validate the systems precision and (2) to measure an entire alpine ski race and retrieve the results shortly after measuring. For that purpose, four separate experiments were performed: (1) forced pendulum, (2) walking, (3) gate positions, and (4) skiing experiments. Segment movement validity was found to be dependent on the frequency of motion, with high accuracy (0.8°, s = 0.6°) for 10 s, which equals ∼10 slalom turns, while accuracy decreased slightly (2.1°, 3.3°, and 4.2° for 0.5, 1, and 2 Hz oscillations, respectively) during 35 s of data collection. The motion capture suits orientation inaccuracy was mostly due to geomagnetic secular variation. The system exhibited high validity regarding the reference trajectory (0.008 m, s = 0.0044) throughout an entire ski race. The system is capable of measuring an entire ski course with less manpower and therefore lower cost compared with camcorder-based techniques.
Scandinavian Journal of Medicine & Science in Sports | 2013
Matej Supej; Lars Sætran; Luca Oggiano; Gertjan Ettema; Nejc Sarabon; Bojan Nemec; Hans-Christer Holmberg
This investigation was designed to (a) develop an individualized mechanical model for measuring aerodynamic drag (Fd) while ski racing through multiple gates, (b) estimate energy dissipation (Ed) caused by Fd and compare this to the total energy loss (Et), and (c) investigate the relative contribution of Ed/Et to performance during giant slalom skiing (GS). Nine elite skiers were monitored in different positions and with different wind velocities in a wind tunnel, as well as during GS and straight downhill skiing employing a Global Navigation Satellite System. On the basis of the wind tunnel measurements, a linear regression model of drag coefficient multiplied by cross‐sectional area as a function of shoulder height was established for each skier (r > 0.94, all P < 0.001). Skiing velocity, Fd, Et, and Ed per GS turn were 15–21 m/s, 20–60 N, −11 to −5 kJ, and −2.3 to −0.5 kJ, respectively. Ed/Et ranged from ∼5% to 28% and the relationship between Et/vin and Ed was r = −0.12 (all NS). In conclusion, (a) Fd during alpine skiing was calculated by mechanical modeling, (b) Ed made a relatively small contribution to Et, and (c) higher relative Ed was correlated to better performance in elite GS skiers, suggesting that reducing ski–snow friction can improve this performance.
Research Quarterly for Exercise and Sport | 2011
Matej Supej; Hans-Christer Holmberg
Abstract Accurate time measurement is essential to temporal analysis in sport. This study aimed to (a) develop a new method for time computation from surveyed trajectories using a high-end global navigation satellite system (GNSS), (b) validate its precision by comparing GNSS with photocells, and (c) examine whether gate-to-gate times can provide more detailed information about alpine skiing performance. The results demonstrated small mean time differences with no systematic bias, with a velocity dependent scatter of time differences, which diminished at higher velocities. Furthermore, the multiple gate-to-gate and lag times demonstrated that the GNSS enabled a more detailed analysis compared to photocells. The measurements using GNSS showed high validity and potential as a tool for more specific analysis of performance in skiing.
British Journal of Sports Medicine | 2017
Matej Supej; Veit Senner; Nicola Petrone; Hans-Christer Holmberg
To achieve success, skiers attempt to optimise various biomechanical parameters (eg, trajectory, velocity, interaction between the skis and snow, energy) that influence performance,1 but this increases risk of injury.2 It is therefore not surprising that injuries are common among alpine skiers.3 To reduce the injury rate, the International Ski Federation (FIS) regulates ski length and width, sidecut radius, and the distance between the foot and ground. In the case of slalom skis, only the minimal waist width is regulated (≥63 mm), while in other disciplines the maximal waist width is regulated by FIS (typically ≤65 mm). On hard snow, wider skis are associated with an elevated risk for injury,4 so we suggest that it may be wise to revise this FIS regulation. Measures concerning the geometry of skis implemented recently have contributed significantly to the 26% reduction in absolute injury rate (injuries/100 athletes/season) (risk ratio 0.74, 95% CI 0.63 to 0.87).3 We acknowledge that new regulations concerning helmets, the development …
Scandinavian Journal of Medicine & Science in Sports | 2014
Silvana Bucher Sandbakk; Matej Supej; Øyvind Sandbakk; Hans-Christer Holmberg
Three dominant techniques are used for downhill turning in cross‐country skiing. In this study, kinematic, kinetic, and temporal characteristics of these techniques are described and related to skier strength and power. Twelve elite female cross‐country skiers performed six consecutive turns of standardized geometry while being monitored by a Global Navigation Satellite System. Overall time was used as an indicator of performance. Skiing and turning parameters were determined from skier trajectories; the proportional use of each technique was determined from video analysis. Leg strength and power were determined by isometric squats and countermovement jumps on a force plate. Snow plowing, parallel skidding, and step turning were utilized for all turns. Faster skiers employed less snow plowing and more step turning, more rapid deceleration and earlier initiation of step turning at higher speed (r = 0.80–0.93; all P < 0.01). Better performance was significantly correlated to higher mean speed and shorter trajectory (r = 0.99/0.65; both P < 0.05) and to countermovement jump characteristics of peak force, time to peak force, and rate of force development (r = −0.71/0.78/−0.83; all P < 0.05). In conclusion, faster skiers used step turning to a greater extent and exhibited higher maximal leg power, which enabled them to combine high speeds with shorter trajectories during turns.
Computer Methods in Biomechanics and Biomedical Engineering | 2013
L. Joakim Holmberg; Marie Lund Ohlsson; Matej Supej; Hans-Christer Holmberg
This study is on how leg utilisation may affect skiing efficiency and performance in double-poling ergometry. Three experiments were conducted, each with a different style of the double-poling technique: traditional with small knee range-of-motion and fixed heels (TRAD); modern with large knee range-of-motion and fixed heels (MOD1) and modern with large knee range-of-motion and free heels (MOD2). For each style, motion data were extracted with automatic marker recognition of reflective markers and applied to a 3D full-body musculoskeletal simulation model. Skiing efficiency (skiing work divided by metabolic muscle work) and performance (forward impulse) were computed from the simulation output. Skiing efficiency was 4.5%, 4.1% and 4.1% for TRAD, MOD1 and MOD2, respectively. Performance was 111, 143 and 149 Ns for TRAD, MOD1 and MOD2, respectively. Thus, higher lower body utilisation increased the performance but decreased the skiing efficiency. These results demonstrate the potential of musculoskeletal simulations for skiing efficiency estimations.
PLOS ONE | 2017
Boye Welde; Thomas Stöggl; Gunnar Mathisen; Matej Supej; Chiara Zoppirolli; Andreas Kjæreng Winther; Barbara Pellegrini; Hans-Christer Holmberg
In this study the pacing strategy, cycle characteristics and choice of technique of elite male cross-country (XC) skiers during a three-lap, 15-km classical race with interval start were measured. During the Norwegian Championships in 2016, fast (n = 18, age: 26±4 yr; height: 182±4 cm; body mass: 78±3 kg (means±SD)) and slow skiers (n = 18, age: 22±2 yr; height: 183±5 cm; body mass: 78±6 kg) were video recorded on flat (0°), intermediate (3.5°) and uphill sections (7.1°) of the first and final laps. All skiers adopted a positive pacing strategy, skiing more slowly (11.8%) with shorter cycles (11.7%) on the final than first lap (both p<0.001; pη2 = 0.93 and 0.87, respectively). The fast skiers were 7.0% faster overall (p<0.001, d = 4.20), and 6.1% (p<0.001, d = 3.32) and 7.0% (p<0.001, d = 3.68) faster on the first and final laps, respectively, compared to slower skiers. On all sections of both laps, the fast skiers exhibited 9.5% more rapid (pη2 = 0.74) and 8.9% (pη2 = 0.48) longer cycles (both p<0.001). On intermediate terrain, the fast skiers employed primarily double poling (DP, 38.9% on the first lap) and double poling with a kick (DPKICK, 50% on the final lap). In contrast, the slow skiers utilized for the most part DP alone (lap 1: 33.3%, lap 3: 38.9%) or in combination with other techniques (lap 1: 33.3%, lap 3: 38.9%) and decreased their usage of DPKICK from 27.8% on the first to 16.7% on the final lap. Skiing velocity on flat and intermediate terrain proved to be the best predictor of race performance (p<0.001). In conclusion, during a 15-km classical XC skiing race, velocity and cycle length decreased from the first to the final lap, most extensively on flat terrain and least uphill. Moreover, on the intermediate sections the fast and slow skiers chose to use different techniques.
Sensors | 2014
Bojan Nemec; Tadej Petrič; Jan Babič; Matej Supej
High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skiers neck. A key issue is how to estimate other more relevant parameters of the skiers body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skiers body with an inverted-pendulum model that oversimplified the skiers body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skiers body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.
International Journal of Sports Physiology and Performance | 2014
Øyvind Sandbakk; Silvana Bucher Sandbakk; Matej Supej; Hans-Christer Holmberg
This study examined the influence of turn radius on velocity and energy profiles when skidding and step turning during more and less effective downhill turns while cross-country skiing. Thirteen elite female cross-country skiers performed single turns with a 9- or 12-m radius using the skidding technique and a 12- or 15-m radius with step turning. Mechanical parameters were monitored using a real-time kinematic Global Navigation Satellite System and video analysis. Step turning was more effective during all phases of a turn, leading to higher velocities than skidding (P < .05). With both techniques, a greater radius was associated with higher velocity (P < .05), but the quality of turning, as assessed on the basis of energy characteristics, was the same. More effective skidding turns involved more pronounced deceleration early in the turn and maintenance of higher velocity thereafter, while more effective step turning involved lower energy dissipation during the latter half of the turn. In conclusion, the single-turn analysis employed here reveals differences in the various techniques chosen by elite cross-country skiers when executing downhill turns of varying radii and can be used to assess the quality of such turns.
International Journal of Performance Analysis in Sport | 2016
Mikael Swarén; Thomas Stöggl; Matej Supej; Anders Eriksson
For the first time, we investigate here the possibility of using a real-time locating system (RTLS) to track cross-country skiers during a competition. For validation, three RTLS tags were attached to the antenna of a real-time kinematics global navigation satellite system (RTK GNSS) carried by a skier, skiing the course at three different intensities. In addition, RTLS data were collected from 70 racers during a FIS cross-country skiing sprint race. Spline interpolations were fitted to the RTLS data. In comparison to the RTK GNSS, the spline models for the three RTLS tags overestimated the mean skiing velocity by 5% and 2% at low and medium intensities, respectively, with no difference between the two systems during high intensity. The corresponding overestimations of the peak velocity at skiing intensities were 15%, 10% and 8%, respectively. A decimated sampling frequency for the RTLS data from 50 Hz to 0.5 Hz resulted in lower typical mean errors for the x- (0.53 m vs. 1.40 m), y- (0.31 m vs. 1.36 m) and z-axis (0.10 m vs. 0.20 m). The spline models based on 0.5 Hz and 1 Hz RTLS data overestimated the finishing times by on average of 0.5 s and 0.3 s, respectively. If a sufficient number of locators is utilized and the number of tags simultaneously recorded is limited, this RTLS can track cross-country skiers accurately. In conclusion, a low RTLS sampling frequency in combination with a spline model offer considerable potential for analyzing performance during cross-country sprint skiing.