Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mateus Batistella is active.

Publication


Featured researches published by Mateus Batistella.


Ecology and Society | 2013

Framing Sustainability in a Telecoupled World

Jianguo Liu; Vanessa Hull; Mateus Batistella; Ruth S. DeFries; Thomas Dietz; Feng Fu; Thomas W. Hertel; R. Cesar Izaurralde; Eric F. Lambin; Shuxin Li; Luiz A. Martinelli; William J. McConnell; Emilio F. Moran; Rosamond L. Naylor; Zhiyun Ouyang; Karen R. Polenske; Anette Reenberg; Gilberto de Miranda Rocha; Cynthia S. Simmons; Peter H. Verburg; Peter M. Vitousek; Fusuo Zhang; Chunquan Zhu

Interactions between distant places are increasingly widespread and influential, often leading to unexpected outcomes with profound implications for sustainability. Numerous sustainability studies have been conducted within a particular place with little attention to the impacts of distant interactions on sustainability in multiple places. Although distant forces have been studied, they are usually treated as exogenous variables and feedbacks have rarely been considered. To understand and integrate various distant interactions better, we propose an integrated framework based on telecoupling, an umbrella concept that refers to socioeconomic and environmental interactions over distances. The concept of telecoupling is a logical extension of research on coupled human and natural systems, in which interactions occur within particular geographic locations. The telecoupling framework contains five major interrelated components, i.e., coupled human and natural systems, flows, agents, causes, and effects. We illustrate the framework using two examples of distant interactions associated with trade of agricultural commodities and invasive species, highlight the implications of the framework, and discuss research needs and approaches to move research on telecouplings forward. The framework can help to analyze system components and their interrelationships, identify research gaps, detect hidden costs and untapped benefits, provide a useful means to incorporate feedbacks as well as trade-offs and synergies across multiple systems (sending, receiving, and spillover systems), and improve the understanding of distant interactions and the effectiveness of policies for socioeconomic and environmental sustainability from local to global levels.


Photogrammetric Engineering and Remote Sensing | 2004

COMPARISON OF LAND-COVER CLASSIFICATION METHODS IN THE BRAZILIAN AMAZON BASIN

Dengsheng Lu; Paul Mausel; Mateus Batistella; Emilio F. Moran

Four distinctly different classifiers were used to analyze multispectral data. Which of these classifiers is most suitable for a specific study area is not always clear. This paper provides a comparison of minimum-distance classifier (MDC), maximumlikelihood classifier (MLC), extraction and classification of homogeneous objects (ECHO), and decision-tree classifier based on linear spectral mixture analysis (DTC-LSMA). Each of the classifiers used both Landsat Thematic Mapper data and identical field-based training sample datasets in a western Brazilian Amazon study area. Seven land-cover classes— mature forest, advanced secondary succession, initial secondary succession, pasture lands, agricultural lands, bare lands, and water—were classified. Classification results indicate that the DTC-LSMA and ECHO classifiers were more accurate than were the MDC and MLC. The overall accuracy of the DTCLSMA approach was 86 percent with a 0.82 kappa coefficient and ECHO had an accuracy of 83 percent with a 0.79 kappa coefficient. The accuracy of the other classifiers ranged from 77 to 80 percent with kappa coefficients from 0.72 to 0.75.


International Journal of Forestry Research | 2012

Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates

Dengsheng Lu; Qi Chen; Guangxing Wang; Emilio F. Moran; Mateus Batistella; Maozhen Zhang; Gaia Vaglio Laurin; David Saah

Landsat Thematic mapper (TM) image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonstrates the forest biomass estimation methods and uncertainty analysis. Results indicate that Landsat TM data can provide adequate biomass estimates for secondary succession but are not suitable for mature forest biomass estimates due to data saturation problems. LiDAR can overcome TM’s shortcoming providing better biomass estimation performance but has not been extensively applied in practice due to data availability constraints. The uncertainty analysis indicates that various sources affect the performance of forest biomass/carbon estimation. With that said, the clear dominate sources of uncertainty are the variation of input sample plot data and data saturation problem related to optical sensors. A possible solution to increasing the confidence in forest biomass estimates is to integrate the strengths of multisensor data.


Photogrammetric Engineering and Remote Sensing | 2003

Settlement Design, Forest Fragmentation, and Landscape Change in Rondônia, Amazônia

Mateus Batistella; Scott M. Robeson; Emilio F. Moran

Deforestation and colonization in Amazonia have attracted substantial attention. This article focuses on an area of 3,000 km 2 within the Brazilian State of Rondonia. Two adjacent settlements were compared to assess the role of their different designs in landscape change. Anari was planned following an orthogonal road network. Machadinho was designed with attention to topography in laying out roads and farm properties, while including communal reserves. Field research was undertaken in conjunction with multi-temporal classifications of remotely sensed data (1988, 1994, and 1998) and landscape ecology methods. The results indicate that large patches of communal reserves play an important role in maintaining lower levels of fragmentation. Analyses of landscape structure confirmed that forest patches in Machadinho are less fragmented, more complex, and preserve more interior habitat. By comparing the effects of different settlement designs on landscape change and forest fragmentation, this article contributes to the debate about colonization strategies in


Acta Amazonica | 2005

Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon

Dengsheng Lu; Mateus Batistella

Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondonia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearsons correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.


Philosophical Transactions of the Royal Society B | 2013

A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network

Toby A. Gardner; Joice Ferreira; Jos Barlow; Alexander C. Lees; Luke Parry; Ima Célia Guimarães Vieira; Erika Berenguer; Ricardo Abramovay; Alexandre Aleixo; Christian Borges Andretti; Luiz E. O. C. Aragão; Ivanei S. Araujo; Williams Souza de Ávila; Richard D. Bardgett; Mateus Batistella; Rodrigo Anzolin Begotti; Troy Beldini; Driss Ezzine de Blas; Rodrigo Fagundes Braga; Danielle L. Braga; Janaína Gomes de Brito; Plínio Barbosa de Camargo; Fabiane Campos dos Santos; Vívian Campos de Oliveira; Amanda Cardoso Nunes Cordeiro; Thiago Moreira Cardoso; Déborah Reis de Carvalho; Sergio Castelani; Júlio Cézar Mário Chaul; Carlos Eduardo Pellegrino Cerri

Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far.


Giscience & Remote Sensing | 2011

A Comparison of Multisensor Integration Methods for Land Cover Classification in the Brazilian Amazon

Dengsheng Lu; Guiying Li; Emilio F. Moran; Luciano Vieira Dutra; Mateus Batistella

Many data fusion methods are available, but it is poorly understood which fusion method is suitable for integrating Landsat Thematic Mapper (TM) and radar data for land cover classification. This research explores the integration of Landsat TM and radar images (i.e., ALOS PALSAR L-band and RADARSAT-2 C-band) for land cover classification in a moist tropical region of the Brazilian Amazon. Different data fusion methods—principal component analysis (PCA), wavelet-merging technique (Wavelet), high-pass filter resolution-merging (HPF), and normalized multiplication (NMM)—were explored. Land cover classification was conducted with maximum likelihood classification based on different scenarios. This research indicates that individual radar data yield much poorer land cover classifications than TM data, and PALSAR L-band data perform relatively better than RADARSAT-2 C-band data. Compared to the TM data, the Wavelet multisensor fusion improved overall classification by 3.3%-5.7%, HPF performed similarly, but PCA and NMM reduced overall classification accuracy by 5.1%-6.1% and 7.6%-12.7%, respectively. Different polarization options, such as HH and HV, work similarly when used in data fusion. This research underscores the importance of selecting a suitable data fusion method that can preserve spectral fidelity while improving spatial resolution.


Photogrammetric Engineering and Remote Sensing | 2005

Satellite estimation of aboveground biomass and impacts of forest stand structure

Dengsheng Lu; Mateus Batistella; Emilio F. Moran

Heterogeneous Amazonian landscapes and complex forest stand structure often make aboveground biomass (AGB) estimation difficult. In this study, spectral mixture analysis was used to convert a Landsat Thematic Mapper (TM) image into green vegetation, shade, and soil fraction images. Entropy was used to analyze the complexity of forest stand structure and to examine impacts of different stand structures on TM reflectance data. The relationships between AGB and fraction images or TM spectral signatures were investigated based on successional and primary forests, respectively, and AGB estimation models were developed for both types of forests. Our findings indicate that the AGB estimation models using fraction images perform better for successional forest biomass estimation than using TM spectral signatures. However, both models based on TM spectral signatures and fractions provided poor performance for primary forest biomass estimation. The complex stand structure and associated canopy shadow greatly reduced relationships between AGB and TM reflectance or fraction images.


Photogrammetric Engineering and Remote Sensing | 2008

A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon

Dengsheng Lu; Mateus Batistella; Emilio F. Moran; Evaristo Eduardo de Miranda

Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin.


Photogrammetric Engineering and Remote Sensing | 2008

Integration of landsat TM and SPOT HRG images for vegetation change detection in the Brazilian amazon

Dengsheng Lu; Mateus Batistella; Emilio F. Moran

Traditional change detection approaches have been proven to be difficult in detecting vegetation changes in the moist tropical regions with multitemporal images. This paper explores the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data for vegetation change detection in the Brazilian Amazon. A principal component analysis was used to integrate TM and HRG panchromatic data. Vegetation change/non-change was detected with the image differencing approach based on the TM and HRG fused image and the corresponding TM image. A rule-based approach was used to classify the TM and HRG multispectral images into thematic maps with three coarse land-cover classes: forest, non-forest vegetation, and non-vegetation lands. A hybrid approach combining image differencing and post-classification comparison was used to detect vegetation change trajectories. This research indicates promising vegetation change techniques, especially for vegetation gain and loss, even if very limited reference data are available.

Collaboration


Dive into the Mateus Batistella's collaboration.

Top Co-Authors

Avatar

Emilio F. Moran

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

E. L. Bolfe

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Dengsheng Lu

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Ricardo Guimaraes Andrade

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo Souza Valladares

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Luciano Vieira Dutra

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar

D. de C. Victoria

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Luiz Eduardo Vicente

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Daniel de Castro Victoria

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Researchain Logo
Decentralizing Knowledge