Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mateusz Koptyra is active.

Publication


Featured researches published by Mateusz Koptyra.


Blood | 2012

Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors

Margaret Nieborowska-Skorska; Piotr Kopinski; Regina Ray; Grazyna Hoser; Danielle Ngaba; Sylwia Flis; Kimberly Cramer; Mamatha M. Reddy; Mateusz Koptyra; Tyrone Penserga; Eliza Glodkowska-Mrowka; Elisabeth Bolton; Tessa L. Holyoake; Connie J. Eaves; Sabine Cerny-Reiterer; Peter Valent; Andreas Hochhaus; Timothy P. Hughes; Heiko van der Kuip; Martin Sattler; Wieslaw Wiktor-Jedrzejczak; Charles C. Richardson; Adrienne M. Dorrance; Tomasz Stoklosa; David A. Williams; Tomasz Skorski

Chronic myeloid leukemia in chronic phase (CML-CP) is induced by BCR-ABL1 oncogenic tyrosine kinase. Tyrosine kinase inhibitors eliminate the bulk of CML-CP cells, but fail to eradicate leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) displaying innate and acquired resistance, respectively. These cells may accumulate genomic instability, leading to disease relapse and/or malignant progression to a fatal blast phase. In the present study, we show that Rac2 GTPase alters mitochondrial membrane potential and electron flow through the mitochondrial respiratory chain complex III (MRC-cIII), thereby generating high levels of reactive oxygen species (ROS) in CML-CP LSCs and primitive LPCs. MRC-cIII-generated ROS promote oxidative DNA damage to trigger genomic instability, resulting in an accumulation of chromosomal aberrations and tyrosine kinase inhibitor-resistant BCR-ABL1 mutants. JAK2(V617F) and FLT3(ITD)-positive polycythemia vera cells and acute myeloid leukemia cells also produce ROS via MRC-cIII. In the present study, inhibition of Rac2 by genetic deletion or a small-molecule inhibitor and down-regulation of mitochondrial ROS by disruption of MRC-cIII, expression of mitochondria-targeted catalase, or addition of ROS-scavenging mitochondria-targeted peptide aptamer reduced genomic instability. We postulate that the Rac2-MRC-cIII pathway triggers ROS-mediated genomic instability in LSCs and primitive LPCs, which could be targeted to prevent the relapse and malignant progression of CML.


Cancer Research | 2008

BCR/ABL and Other Kinases from Chronic Myeloproliferative Disorders Stimulate Single-Strand Annealing, an Unfaithful DNA Double-Strand Break Repair

Kimberly Cramer; Margaret Nieborowska-Skorska; Mateusz Koptyra; Artur Slupianek; Emir Tyrone P. Penserga; Connie J. Eaves; Walter E. Aulitzky; Tomasz Skorski

Myeloproliferative disorders (MPD) are stem cell-derived clonal diseases arising as a consequence of acquired aberrations in c-ABL, Janus-activated kinase 2 (JAK2), and platelet-derived growth factor receptor (PDGFR) that generate oncogenic fusion tyrosine kinases (FTK), including BCR/ABL, TEL/ABL, TEL/JAK2, and TEL/PDGFbetaR. Here, we show that FTKs stimulate the formation of reactive oxygen species and DNA double-strand breaks (DSB) both in hematopoietic cell lines and in CD34(+) leukemic stem/progenitor cells from patients with chronic myelogenous leukemia (CML). Single-strand annealing (SSA) represents a relatively rare but very unfaithful DSB repair mechanism causing chromosomal aberrations. Using a specific reporter cassette integrated into genomic DNA, we found that BCR/ABL and other FTKs stimulated SSA activity. Imatinib-mediated inhibition of BCR/ABL abrogated this effect, implicating a kinase-dependent mechanism. Y253F, E255K, T315I, and H396P mutants of BCR/ABL that confer imatinib resistance also stimulated SSA. Increased expression of either nonmutated or mutated BCR/ABL kinase, as is typical of blast phase cells and very primitive chronic phase CML cells, was associated with higher SSA activity. BCR/ABL-mediated stimulation of SSA was accompanied by enhanced nuclear colocalization of RAD52 and ERCC1, which play a key role in the repair. Taken together, these findings suggest a role of FTKs in causing disease progression in MPDs by inducing chromosomal instability through the production of DSBs and stimulation of SSA repair.


Leukemia | 2008

BCR/ABL promotes accumulation of chromosomal aberrations induced by oxidative and genotoxic stress.

Mateusz Koptyra; K Cramer; Artur Slupianek; C Richardson; Tomasz Skorski

BCR/ABL promotes accumulation of chromosomal aberrations induced by oxidative and genotoxic stress


Blood | 2013

Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells.

Elisabeth Bolton-Gillespie; Mirle Schemionek; Hans-Ulrich Klein; Sylwia Flis; Grazyna Hoser; Thoralf Lange; Margaret Nieborowska-Skorska; Jacqueline Maier; Linda Kerstiens; Mateusz Koptyra; Martin C. Müller; Hardik Modi; Tomasz Stoklosa; Ilona Seferynska; Ravi Bhatia; Tessa L. Holyoake; Steffen Koschmieder; Tomasz Skorski

Genomic instability is a hallmark of chronic myeloid leukemia in chronic phase (CML-CP) resulting in BCR-ABL1 mutations encoding resistance to tyrosine kinase inhibitors (TKIs) and/or additional chromosomal aberrations leading to disease relapse and/or malignant progression. TKI-naive and TKI-treated leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) accumulate high levels of reactive oxygen species (ROS) and oxidative DNA damage. To determine the role of TKI-refractory LSCs in genomic instability, we used a murine model of CML-CP where ROS-induced oxidative DNA damage was elevated in LSCs, including quiescent LSCs, but not in LPCs. ROS-induced oxidative DNA damage in LSCs caused clinically relevant genomic instability in CML-CP-like mice, such as TKI-resistant BCR-ABL1 mutations (E255K, T315I, H396P), deletions in Ikzf1 and Trp53, and additions in Zfp423 and Idh1. Despite inhibition of BCR-ABL1 kinase, imatinib did not downregulate ROS and oxidative DNA damage in TKI-refractory LSCs to the levels detected in normal cells, and CML-CP-like mice treated with imatinib continued to accumulate clinically relevant genetic aberrations. Inhibition of class I p21-activated protein kinases by IPA3 downregulated ROS in TKI-naive and TKI-treated LSCs. Altogether, we postulate that genomic instability may originate in the most primitive TKI-refractory LSCs in TKI-naive and TKI-treated patients.


Cell Cycle | 2006

ATR-Chk1 Axis Protects BCR/ABL Leukemia Cells from the Lethal Effect of DNA Double-Strand Breaks

Margaret Nieborowska-Skorska; Tomasz Stoklosa; Mandrita Datta; Lori Rink; Artur Slupianek; Mateusz Koptyra; Ilona Seferynska; Konrad Krszyna; Janusz Blasiak; Tomasz Skorski

BCR/ABL-positive leukemia cells accumulated more replication-dependent DNA double-strand breaks (DSBs) than normal counterparts after treatment with cisplatin and MMC, as assessed by pulse field gel electrophoresis (PFGE) and neutral comet assay. In addition, leukemia cells could repair these lesions more efficiently than normal cells and eventually survive genotoxic treatment. Elevated levels of drug-induced DSBs in leukemia cells were associated with higher activity of ATR kinase, and enhanced phosphorylation of histone H2AX on serine 139 (γ-H2AX). γ-H2AX eventually started to disappear in BCR/ABL cells, while continued to increase in parental cells. In addition, the expression and ATR-mediated phosphorylation of Chk1 kinase on serine 345 were often more abundant in BCR/ABL-positive leukemia cells than normal counterparts after genotoxic treatment. Inhibition of ATR kinase by caffeine but not Chk1 kinase by indolocarbazole inhibitor, SB218078 sensitized BCR/ABL leukemia cells to MMC in a short-term survival assay. Nevertheless, both caffeine and SB218078 enhanced the genotoxic effect of MMC in a long-term clonogenic assay. This effect was associated with the abrogation of transient accumulation of leukemia cells in S and G2/M cell cycle phases after drug treatment. In conclusion, ATR - Chk1 axis was strongly activated in BCR/ABL-positive cells and contributed to the resistance to DNA cross-linking agents causing numerous replication-dependent DSBs.


Cell Cycle | 2004

BCR/ABL recruits p53 tumor suppressor protein to induce drug resistance.

Tomasz Stoklosa; Artur Slupianek; Mandrita Datta; Margaret Nieborowska-Skorska; Michał Nowicki; Mateusz Koptyra; Tomasz Skorski

Tumors expressing the ABL oncoproteins (BCR/ABL, TEL/ABL, v-ABL) can avoidapoptosis triggered by DNA damaging agents. The tumor suppressor protein p53 is animportant activator of apoptosis in normal cells; conversely its functional loss may causedrug resistance. The ABL oncoprotein - p53 paradigm represents the relationship between anoncogenic tyrosine kinase and a tumor suppressor gene. Here we show that BCR/ABLoncoproteins employ p53 to induce resistance to DNA damage in myeloid leukemia cells.Cells transformed by the ABL oncoproteins displayed accumulation of p53 upon DNAdamage. In contrast, only a modest increase of p53 expression followed by activation ofcaspase-3 were detected in normal cells expressing endogenous c-ABL. Phosphatidylinositol-3 kinase-like protein kinases (ATR and also ATM) -dependent phosphorylation of p53-Ser15residue was associated with the accumulation of p53, and stimulation of p21Waf-1 andGADD45, resulting in G2/M delay in BCR/ABL cells after genotoxic treatment. Inhibition ofp53 by siRNA or by the temperature-sensitive mutation reduced G2/M accumulation anddrug resistance of BCR/ABL cells. In conclusion, accumulation of the p53 proteincontributed to prolonged G2/M checkpoint activation and drug resistance in myeloid cellsexpressing the BCR/ABL oncoproteins.


International Journal of Cancer | 2006

IRS‐1–Rad51 nuclear interaction sensitizes JCV T‐antigen positive medulloblastoma cells to genotoxic treatment

Joanna Trojanek; Thu Ho; Sidney Croul; Jin Ying Wang; Janaki Chintapalli; Mateusz Koptyra; Antonio Giordano; Kamel Khalili; Krzysztof Reiss

The large T‐antigen from human polyomavirus JC (JCV T‐antigen) is suspected to play a role in malignant transformation. Previously, we reported that JCV T‐antigen requires the presence of a functional insulin‐like growth factor I receptor (IGF‐IR) for transformation of fibroblasts and for survival of medulloblastoma cell lines; that IGF‐IR is phosphorylated in medulloblastoma biopsies and that JCV T‐antigen inhibits homologous recombination‐directed DNA repair, causing accumulation of mutations. Here we are evaluating whether JCV T‐antigen positive and negative mouse medulloblastoma cell lines, which significantly differ in their tumorigenic properties, are also different in their abilities to repair double strand breaks of DNA (DSBs). Our results show that despite much stronger tumorigenic potential, JCV T‐antigen positive medulloblastoma cells are more sensitive to genotoxic agents (cisplatin and γ‐irradiation). Subsequent analysis of DNA repair of DSBs indicated that homologous recombination‐directed DNA repair (HRR) was selectively attenuated in JCV T‐antigen positive medulloblastoma cells. JCV T‐antigen did not affect HRR directly. In the presence of JCV T‐antigen, insulin receptor substrate 1 (IRS‐1) translocated to the nucleus where it co‐localized with Rad51, possibly attenuating HRR.


Oncogene | 2005

BLM helicase is activated in BCR/ABL leukemia cells to modulate responses to cisplatin

Artur Slupianek; Ewa Gurdek; Mateusz Koptyra; Michał Nowicki; Khwaja M. Siddiqui; Joanna Groden; Tomasz Skorski

Bloom protein (BLM) is a 3′–5′ helicase, mutated in Bloom syndrome, which plays an important role in response to DNA double-strand breaks and stalled replication forks. Here, we show that BCR/ABL tyrosine kinase, which also modulates DNA repair capacity, is associated with elevated expression of BLM. Downregulation of BLM by antisense cDNA or dominant-negative mutant inhibits homologous recombination repair (HRR) and increases sensitivity to cisplatin in BCR/ABL-positive cells. Bone marrow cells from mice heterozygous for BLM mutation, BLMCin/+, transfected with BCR/ABL display increased sensitivity to cisplatin compared to those obtained from the wild-type littermates. BCR/ABL promotes interactions of BLM with RAD51, while simultaneous overexpression of BLM and RAD51 in normal cells increases drug resistance. These data suggest that BLM collaborates with RAD51 to facilitate HRR and promotes the resistance of BCR/ABL-positive leukemia cells to DNA-damaging agents.


Leukemia | 2011

Monoubiquitinated Fanconi anemia D2 (FANCD2-Ub) is required for BCR-ABL1 kinase-induced leukemogenesis

Mateusz Koptyra; Tomasz Stoklosa; Grazyna Hoser; Eliza Glodkowska-Mrowka; Ilona Seferynska; Agata Klejman; Janusz Blasiak; Tomasz Skorski

Fanconi D2 (FANCD2) is monoubiquitinated on K561 (FANCD2-Ub) in response to DNA double-strand breaks (DSBs) to stimulate repair of these potentially lethal DNA lesions. FANCD2-Ub was upregulated in CD34+ chronic myeloid leukemia (CML) cells and in BCR-ABL1 kinase-positive cell lines in response to elevated levels of reactive oxygen species (ROS) and DNA cross-linking agent mitomycin C. Downregulation of FANCD2 and inhibition of FANCD2-Ub reduced the clonogenic potential of CD34+ CML cells and delayed BCR-ABL1 leukemogenesis in mice. Retarded proliferation of BCR-ABL1 positive FANCD2−/− leukemia cells could be rescued by FANCD2 expression. BCR-ABL1 positive FANCD2−/− cells accumulated more ROS-induced DSBs in comparison with BCR-ABL1 positive FANCD2+/+ cells. Antioxidants diminished the number of DSBs and enhanced proliferation of BCR-ABL1 positive FANCD2−/− cells. Expression of wild-type FANCD2 and FANCD2(S222A) phosphorylation-defective mutant (deficient in stimulation of intra-S phase checkpoint, but proficient in DSB repair), but not FANCD2(K561R) monoubiquitination-defective mutant (proficient in stimulation of intra-S phase checkpoint, but deficient in DSB repair) reduced the number of DSBs and facilitated proliferation of BCR-ABL1 positive FANCD2−/− cells. We hypothesize that FANCD2-Ub has an important role in BCR-ABL1 leukemogenesis because of its ability to facilitate the repair of numerous ROS-induced DSBs.


Cancer Research | 2011

Imatinib Sensitivity in BCR-ABL1–Positive Chronic Myeloid Leukemia Cells Is Regulated by the Remaining Normal ABL1 Allele

Anna Virgili; Mateusz Koptyra; Yashodhara Dasgupta; Eliza Glodkowska-Mrowka; Tomasz Stoklosa; Elisabeth P. Nacheva; Tomasz Skorski

Chronic myeloid leukemia in chronic phase (CML-CP) cells that harbor oncogenic BCR-ABL1 and normal ABL1 allele often become resistant to the ABL1 kinase inhibitor imatinib. Here, we report that loss of the remaining normal ABL1 allele in these tumors, which results from cryptic interstitial deletion in 9q34 in patients who did not achieve a complete cytogenetic remission (CCyR) during treatment, engenders a novel unexpected mechanism of imatinib resistance. BCR-ABL1-positive Abl1(-/-) leukemia cells were refractory to imatinib as indicated by persistent BCR-ABL1-mediated tyrosine phosphorylation, lack of BCR-ABL1 protein degradation, increased cell survival, and clonogenic activity. Expression of ABL1 kinase, but not a kinase-dead mutant, restored the antileukemic effects of imatinib in ABL1-negative chronic myelogenous leukemia (CML) cells and in BCR-ABL1-positive Abl1(-/-) murine leukemia cells. The intracellular concentration of imatinib and expression of its transporters were not affected, although proteins involved in BCR-ABL1 degradation were downregulated in Abl1(-/-) cells. Furthermore, 12 genes associated with imatinib resistance were favorably deregulated in Abl1(-/-) leukemia. Taken together, our results indicate that loss of the normal ABL1 kinase may serve as a key prognostic factor that exerts major impact on CML treatment outcomes.

Collaboration


Dive into the Mateusz Koptyra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomasz Stoklosa

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ilona Seferynska

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Michał Nowicki

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge