Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mateusz M. Plucinski is active.

Publication


Featured researches published by Mateusz M. Plucinski.


Lancet Infectious Diseases | 2015

Effect of the Ebola-virus-disease epidemic on malaria case management in Guinea, 2014: a cross-sectional survey of health facilities

Mateusz M. Plucinski; Timothée Guilavogui; Sidibe Sidikiba; Nouman Diakité; Souleymane Diakite; Mohamed Dioubaté; Ibrahima Bah; Ian Hennessee; Jessica K. Butts; Eric S. Halsey; Peter D. McElroy; S. Patrick Kachur; Jamila Aboulhab; Richard James; Moussa Keita

Summary Background The ongoing west Africa Ebola-virus-disease epidemic has disrupted the entire health-care system in affected countries. Because of the overlap of symptoms of Ebola virus disease and malaria, the care delivery of malaria is particularly sensitive to the indirect effects of the current Ebola-virus-disease epidemic. We therefore characterise malaria case management in the context of the Ebola-virus-disease epidemic and document the effect of the Ebola-virus-disease epidemic on malaria case management. Methods We did a cross-sectional survey of public health facilities in Guinea in December, 2014. We selected the four prefectures most affected by Ebola virus disease and selected four randomly from prefectures without any reported cases of the disease. 60 health facilities were sampled in Ebola-affected and 60 in Ebola-unaffected prefectures. Study teams abstracted malaria case management indicators from registers for January to November for 2013 and 2014 and interviewed health-care workers. Nationwide weekly surveillance data for suspect malaria cases reported between 2011 and 2014 were analysed independently. Data for malaria indicators in 2014 were compared with previous years. Findings We noted substantial reductions in all-cause outpatient visits (by 23 103 [11%] of 214 899), cases of fever (by 20249 [15%] of 131 330), and patients treated with oral (by 22 655 [24%] of 94 785) and injectable (by 5219 [30%] of 17 684) antimalarial drugs in surveyed health facilities. In Ebola-affected prefectures, 73 of 98 interviewed community health workers were operational (74%, 95% CI 65–83) and 35 of 73 were actively treating malaria cases (48%, 36–60) compared with 106 of 112 (95%, 89–98) and 102 of 106 (96%, 91–99), respectively, in Ebola-unaffected prefectures. Nationwide, the Ebola-virus-disease epidemic was estimated to have resulted in 74 000 (71 000–77 000) fewer malaria cases seen at health facilities in 2014. Interpretation The reduction in the delivery of malaria care because of the Ebola-virus-disease epidemic threatens malaria control in Guinea. Untreated and inappropriately treated malaria cases lead to excess malaria mortality and more fever cases in the community, impeding the Ebola-virus-disease response. Funding Global Fund to Fight AIDS, Tuberculosis and Malaria, and Presidents Malaria Initiative.


PLOS Pathogens | 2015

Selection and spread of artemisinin-resistant alleles in Thailand prior to the global artemisinin resistance containment campaign.

Eldin Talundzic; Sheila Okoth; Kanungnit Congpuong; Mateusz M. Plucinski; Lindsay Morton; Ira F. Goldman; Patrick S. Kachur; Chansuda Wongsrichanalai; Wichai Satimai; John W. Barnwell; Venkatachalam Udhayakumar

The recent emergence of artemisinin resistance in the Greater Mekong Subregion poses a major threat to the global effort to control malaria. Tracking the spread and evolution of artemisinin-resistant parasites is critical in aiding efforts to contain the spread of resistance. A total of 417 patient samples from the year 2007, collected during malaria surveillance studies across ten provinces in Thailand, were genotyped for the candidate Plasmodium falciparum molecular marker of artemisinin resistance K13. Parasite genotypes were examined for K13 propeller mutations associated with artemisinin resistance, signatures of positive selection, and for evidence of whether artemisinin-resistant alleles arose independently across Thailand. A total of seven K13 mutant alleles were found (N458Y, R539T, E556D, P574L, R575K, C580Y, S621F). Notably, the R575K and S621F mutations have previously not been reported in Thailand. The most prevalent artemisinin resistance-associated K13 mutation, C580Y, carried two distinct haplotype profiles that were separated based on geography, along the Thai-Cambodia and Thai-Myanmar borders. It appears these two haplotypes may have independent evolutionary origins. In summary, parasites with K13 propeller mutations associated with artemisinin resistance were widely present along the Thai-Cambodia and Thai-Myanmar borders prior to the implementation of the artemisinin resistance containment project in the region.


Antimicrobial Agents and Chemotherapy | 2015

Efficacy of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine for Treatment of Uncomplicated Malaria in Children in Zaire and Uíge Provinces, Angola

Mateusz M. Plucinski; Eldin Talundzic; Lindsay Morton; Pedro Rafael Dimbu; Aleixo Panzo Macaia; Filomeno Fortes; Ira F. Goldman; Naomi W. Lucchi; Gail Stennies; John R. MacArthur; Venkatachalam Udhayakumar

ABSTRACT The development of resistance to antimalarials is a major challenge for global malaria control. Artemisinin-based combination therapies, the newest class of antimalarials, are used worldwide but there have been reports of artemisinin resistance in Southeast Asia. In February through May 2013, we conducted open-label, nonrandomized therapeutic efficacy studies of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) in Zaire and Uíge Provinces in northern Angola. The parasitological and clinical responses to treatment in children with uncomplicated Plasmodium falciparum monoinfection were measured over 28 days, and the main outcome was a PCR-corrected adequate clinical and parasitological response (ACPR) proportion on day 28. Parasites from treatment failures were analyzed for the presence of putative molecular markers of resistance to lumefantrine and artemisinins, including the recently identified mutations in the K13 propeller gene. In the 320 children finishing the study, 25 treatment failures were observed: 24 in the AL arms and 1 in the DP arm. The PCR-corrected ACPR proportions on day 28 for AL were 88% (95% confidence interval [CI], 78 to 95%) in Zaire and 97% (91 to 100%) in Uíge. For DP, the proportions were 100% (95 to 100%) in Zaire, and 100% (96 to 100%) in Uíge. None of the treatment failures had molecular evidence of artemisinin resistance. In contrast, 91% of AL late-treatment failures had markers associated with lumefantrine resistance on the day of failure. The absence of molecular markers for artemisinin resistance and the observed efficacies of both drug combinations suggest no evidence of artemisinin resistance in northern Angola. There is evidence of increased lumefantrine resistance in Zaire, which should continue to be monitored.


Open Forum Infectious Diseases | 2014

Novel Mutation in Cytochrome B of Plasmodium falciparum in One of Two Atovaquone-Proguanil Treatment Failures in Travelers Returning From Same Site in Nigeria

Mateusz M. Plucinski; Curtis S. Huber; Sheila Akinyi; Willard Dalton; Mary Eschete; Katharine K. Grady; Luciana Silva-Flannery; Blaine A. Mathison; Venkatachalam Udhayakumar; Paul M. Arguin; John W. Barnwell

Background  Atovaquone-proguanil (AP) is the most commonly used treatment for uncomplicated Plasmodium falciparum malaria in the United States. Apparent AP treatment failures were reported 7 months apart in 2 American travelers who stayed in the same compound for foreign workers in Rivers State, Nigeria. Methods  We analyzed pretreatment (day 0) and day of failure samples from both travelers for mutations in the P falciparum cytochrome B (pfcytb) and dihydrofolate reductase (pfdhfr) genes associated with resistance to atovaquone and cycloguanil, the active metabolite of proguanil, respectively. We genotyped the parasites and sequenced their mitochondrial genomes. Results  On day 0, both travelers had proguanil-resistant genotypes but atovaquone-sensitive cytb sequences. Day of failure samples exhibited mutations in cytb for both travelers. One traveler had the common Y268S mutation, whereas the other traveler had a previously unreported mutation, I258M. The travelers had unrelated parasite genotypes and different mitochondrial genomes. Conclusions  Despite the infections likely having been contracted in the same site, there is no evidence that the cases were related. The mutations likely arose independently during the acute infection or treatment. Our results highlight the importance of genotyping parasites and sequencing the full cytb and dhfr genes in AP failures to rule out transmission of AP-resistant strains and identify novel mechanisms of AP resistance.


Malaria Journal | 2017

Efficacy of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola, 2015

Mateusz M. Plucinski; Pedro Rafael Dimbu; Aleixo Panzo Macaia; Carolina Miguel Ferreira; Claudete Samutondo; Joltim Quivinja; Marília Afonso; Richard Kiniffo; Eliane Mbounga; Julia Kelley; Dhruviben S. Patel; Yun He; Eldin Talundzic; Denise O. Garrett; Eric S. Halsey; Venkatachalam Udhayakumar; Pascal Ringwald; Filomeno Fortes

BackgroundRecent anti-malarial resistance monitoring in Angola has shown efficacy of artemether–lumefantrine (AL) in certain sites approaching the key 90% lower limit of efficacy recommended for artemisinin-based combination therapy. In addition, a controversial case of malaria unresponsive to artemisinins was reported in a patient infected in Lunda Sul Province in 2013.MethodsDuring January–June 2015, investigators monitored the clinical and parasitological response of children with uncomplicated Plasmodium falciparum infection treated with AL, artesunate–amodiaquine (ASAQ), or dihydroartemisinin–piperaquine (DP). The study comprised two treatment arms in each of three provinces: Benguela (AL, ASAQ), Zaire (AL, DP), and Lunda Sul (ASAQ, DP). Samples from treatment failures were analysed for molecular markers of resistance for artemisinin (K13) and lumefantrine (pfmdr1).ResultsA total of 467 children reached a study endpoint. Fifty-four treatment failures were observed: four early treatment failures, 40 re-infections and ten recrudescences. Excluding re-infections, the 28-day microsatellite-corrected efficacy was 96.3% (95% CI 91–100) for AL in Benguela, 99.9% (95–100) for ASAQ in Benguela, 88.1% (81–95) for AL in Zaire, and 100% for ASAQ in Lunda Sul. For DP, the 42-day corrected efficacy was 98.8% (96–100) in Zaire and 100% in Lunda Sul. All treatment failures were wild type for K13, but all AL treatment failures had pfmdr1 haplotypes associated with decreased lumefantrine susceptibility.ConclusionsNo evidence was found to corroborate the specific allegation of artemisinin resistance in Lunda Sul. The efficacy below 90% of AL in Zaire matches findings from 2013 from the same site. Further monitoring, particularly including measurement of lumefantrine blood levels, is recommended.


Proceedings of the Royal Society B: Biological Sciences | 2016

Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

Mary Bushman; Lindsay Morton; Nancy O. Duah; Neils B. Quashie; Benjamin K. Abuaku; Kwadwo A. Koram; Pedro Rafael Dimbu; Mateusz M. Plucinski; Julie Gutman; Peter Lyaruu; S. Patrick Kachur; Jacobus C. de Roode; Venkatachalam Udhayakumar

Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.


Tropical Medicine & International Health | 2015

Sleeping arrangements and mass distribution of bed nets in six districts in central and northern Mozambique

Mateusz M. Plucinski; S. Chicuecue; Eusebio Macete; Geraldo Chambe; O. Muguande; Graça Matsinhe; James Colborn; Steven S. Yoon; Tracy J. Doyle; S P Kachur; Pedro Aide; Pedro L. Alonso; Caterina Guinovart; Juliette Morgan

Universal coverage with insecticide‐treated bed nets is a cornerstone of modern malaria control. Mozambique has developed a novel bed net allocation strategy, where the number of bed nets allocated per household is calculated on the basis of household composition and assumptions about who sleeps with whom. We set out to evaluate the performance of the novel allocation strategy.


PLOS ONE | 2015

Genetic Analysis and Species Specific Amplification of the Artemisinin Resistance-Associated Kelch Propeller Domain in P. falciparum and P. vivax

Eldin Talundzic; Stella M. Chenet; Ira F. Goldman; Dhruviben S. Patel; Julia A. Nelson; Mateusz M. Plucinski; John W. Barnwell; Venkatachalam Udhayakumar

Plasmodium falciparum resistance to artemisinin has emerged in the Greater Mekong Subregion and now poses a threat to malaria control and prevention. Recent work has identified mutations in the kelch propeller domain of the P. falciparum K13 gene to be associated artemisinin resistance as defined by delayed parasite clearance and ex vivo ring stage survival assays. Species specific primers for the two most prevalent human malaria species, P. falciparum and P. vivax, were designed and tested on multiple parasite isolates including human, rodent, and non- humans primate Plasmodium species. The new protocol described here using the species specific primers only amplified their respective species, P. falciparum and P. vivax, and did not cross react with any of the other human malaria Plasmodium species. We provide an improved species specific PCR and sequencing protocol that could be effectively used in areas where both P. falciparum and P. vivax are circulating. To design this improved protocol, the kelch gene was analyzed and compared among different species of Plasmodium. The kelch propeller domain was found to be highly conserved across the mammalian Plasmodium species.


Antimicrobial Agents and Chemotherapy | 2015

Robust Algorithm for Systematic Classification of Malaria Late Treatment Failures as Recrudescence or Reinfection Using Microsatellite Genotyping.

Mateusz M. Plucinski; Lindsay Morton; Mary Bushman; Pedro Rafael Dimbu; Venkatachalam Udhayakumar

ABSTRACT Routine therapeutic efficacy monitoring to measure the response to antimalarial treatment is a cornerstone of malaria control. To correctly measure drug efficacy, therapeutic efficacy studies require genotyping parasites from late treatment failures to differentiate between recrudescent infections and reinfections. However, there is a lack of statistical methods to systematically classify late treatment failures from genotyping data. A Bayesian algorithm was developed to estimate the posterior probability of late treatment failure being the result of a recrudescent infection from microsatellite genotyping data. The algorithm was implemented using a Monte Carlo Markov chain approach and was used to classify late treatment failures using published microsatellite data from therapeutic efficacy studies in Ethiopia and Angola. The algorithm classified 85% of the Ethiopian and 95% of the Angolan late treatment failures as either likely reinfection or likely recrudescence, defined as a posterior probability of recrudescence of <0.1 or >0.9, respectively. The adjusted efficacies calculated using the new algorithm differed from efficacies estimated using commonly used methods for differentiating recrudescence from reinfection. In a high-transmission setting such as Angola, as few as 15 samples needed to be genotyped in order to have enough power to correctly classify treatment failures. Analysis of microsatellite genotyping data for differentiating between recrudescence and reinfection benefits from an approach that both systematically classifies late treatment failures and estimates the uncertainty of these classifications. Researchers analyzing genotyping data from antimalarial therapeutic efficacy monitoring are urged to publish their raw genetic data and to estimate the uncertainty around their classification.


Malaria Journal | 2017

Evaluating malaria case management at public health facilities in two provinces in Angola

Mateusz M. Plucinski; Manzambi Ferreira; Carolina Miguel Ferreira; Jordan Burns; Patrick Gaparayi; Lubaki João; Olinda da Costa; Parambir Gill; Claudete Samutondo; Joltim Quivinja; Eliane Mbounga; Gabriel De Leon; Eric S. Halsey; Pedro Rafael Dimbu; Filomeno Fortes

BackgroundMalaria accounts for the largest portion of healthcare demand in Angola. A pillar of malaria control in Angola is the appropriate management of malaria illness, including testing of suspect cases with rapid diagnostic tests (RDTs) and treatment of confirmed cases with artemisinin-based combination therapy (ACT). Periodic systematic evaluations of malaria case management are recommended to measure health facility readiness and adherence to national case management guidelines.MethodsCross-sectional health facility surveys were performed in low-transmission Huambo and high-transmission Uíge Provinces in early 2016. In each province, 45 health facilities were randomly selected from among all public health facilities stratified by level of care. Survey teams performed inventories of malaria commodities and conducted exit interviews and re-examinations, including RDT testing, of a random selection of all patients completing outpatient consultations. Key health facility readiness and case management indicators were calculated adjusting for the cluster sampling design and utilization.ResultsAvailability of RDTs or microscopy on the day of the survey was 71% (54–83) in Huambo and 85% (67–94) in Uíge. At least one unit dose pack of one formulation of an ACT (usually artemether–lumefantrine) was available in 83% (66–92) of health facilities in Huambo and 79% (61–90) of health facilities in Uíge. Testing rates of suspect malaria cases in Huambo were 30% (23–38) versus 69% (53–81) in Uíge. Overall, 28% (13–49) of patients with uncomplicated malaria, as determined during the re-examination, were appropriately treated with an ACT with the correct dose in Huambo, compared to 60% (42–75) in Uíge. Incorrect case management of suspect malaria cases was associated with lack of healthcare worker training in Huambo and ACT stock-outs in Uíge.ConclusionsThe results reveal important differences between provinces. Despite similar availability of testing and ACT, testing and treatment rates were lower in Huambo compared to Uíge. A majority of true malaria cases seeking care in health facilities in Huambo were not appropriately treated with anti-malarials, highlighting the importance of continued training and supervision of healthcare workers in malaria case management, particularly in areas with decreased malaria transmission.

Collaboration


Dive into the Mateusz M. Plucinski's collaboration.

Top Co-Authors

Avatar

Venkatachalam Udhayakumar

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Eric S. Halsey

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Eldin Talundzic

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Naomi W. Lucchi

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Eric Rogier

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ira F. Goldman

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

John W. Barnwell

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Lindsay Morton

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Filomeno Fortes

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Dhruviben S. Patel

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge