Matheus de Souza Gomes
Federal University of Uberlandia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matheus de Souza Gomes.
Journal of Biological Chemistry | 2012
S. Duygu Selcuklu; Mark Ta Donoghue; Kristina Rehmet; Matheus de Souza Gomes; Antoine Fort; Prasad Kovvuru; Mohan Kumar Muniyappa; Michael J. Kerin; Anton J. Enright; Charles Spillane
Background: Dysregulation of miRNAs is associated with breast cancer. Results: MiR-9 overexpression and transcriptome analysis reveals novel miR-9 targets, including MTHFD2, which can recapitulate anti-proliferative effects of miR-9 overexpression. Conclusion: MiR-9 displays tumor suppressor-like activity in breast cancer cells; MTHFD2 contributes to this activity. Significance: Understanding miR-9-directed regulation of the breast cancer transcriptome is important for diagnosis and therapeutics. Although underexpression of miR-9 in cancer cells is reported in many cancer types, it is currently difficult to classify miR-9 as a tumor suppressor or an oncomir. We demonstrate that miR-9 expression is down-regulated in MCF-7 and MDA-MB-231 breast cancer cells compared with MCF-10-2A normal breast cell line. Increasing miR-9 expression levels in breast cancer cells induced anti-proliferative, anti-invasive, and pro-apoptotic activity. In addition, microarray profiling of the transcriptome of MCF-7 cells overexpressing miR-9 identified six novel direct miR-9 targets (AP3B1, CCNG1, LARP1, MTHFD1L, MTHFD2, and SRPK1). Among these, MTHFD2 was identified as a miR-9 target gene that affects cell proliferation. Knockdown of MTHFD2 mimicked the effect observed when miR-9 was overexpressed by decreasing cell viability and increasing apoptotic activity. Despite variable effects on different cell lines, proliferative and anti-apoptotic activity of MTHFD2 was demonstrated whereby it could escape from miR-9-directed suppression (by overexpression of MTHFD2 with mutated miR-9 binding sites). Furthermore, endogenous expression levels of miR-9 and MTHFD2 displayed inverse expression profiles in primary breast tumor samples compared with normal breast samples; miR-9 was down-regulated, and MTHFD2 was up-regulated. These results indicate anti-proliferative and pro-apoptotic activity of miR-9 and that direct targeting of MTHFD2 can contribute to tumor suppressor-like activity of miR-9 in breast cancer cells.
Genomics | 2011
Matheus de Souza Gomes; Mohan Kumar Muniyappa; Sávio Gonçalves Carvalho; Renata Guerra-Sá; Charles Spillane
Mature microRNAs (miRNAs) are small, non-coding regulatory RNAs which can elicit post-transcriptional repression of mRNA levels of target genes. Here, we report the identification of 67 mature and 42 precursor miRNAs in the Schistosoma mansoni parasite. The evolutionarily conserved S. mansoni miRNAs consisted of 26 precursor miRNAs and 35 mature miRNAs, while we identified 16 precursor miRNAs and 32 mature miRNAs that displayed no conservation. These S. mansoni miRNAs are located on seven autosomal chromosomes and a sex (W) chromosome. miRNA expansion through gene duplication was suggested for at least two miRNA families miR-71 and mir-2. miRNA target finding analysis identified 389 predicted mRNA targets for the identified miRNAs and suggests that the sma-mir-71 may be involved in female sexual maturation. Given the important roles of miRNAs in animals, the identification and characterization of miRNAs in S. mansoni will facilitate novel approaches towards prevention and treatment of Schistosomiasis.
Parasitology International | 2009
Matheus de Souza Gomes; Fernanda J. Cabral; Liana K. Jannotti-Passos; Omar dos Santos Carvalho; Vanderlei Rodrigues; Elio H. Baba; Renata G. Sá
RNA silencing refers to a series of nuclear and cytoplasmatic processes involved in the post-transcriptional regulation of gene expression or post-transcriptional gene silencing (PTGS), either by sequence-specific mRNA degradation or by translational arrest. The best characterized small RNAs are microRNAs (miRNAs), which predominantly perform gene silencing through post-transcriptional mechanisms. In this work we used bioinformatic approaches to identify the parasitic trematode Schistosoma mansoni sequences that are similar to enzymes involved in the post-transcriptional gene silencing mediated by miRNA pathway. We used amino acid sequences of well-known proteins involved in the miRNA pathway against S. mansoni genome and transcriptome databases identifying a total of 13 putative proteins in the parasite. In addition, the transcript levels of SmDicer1 and SmAgo2/3/4 were identified by qRT-PCR using cercariae, adult worms, eggs and in vitro cultivated schistosomula. Our results showed that the SmDicer1 and SmAgo2/3/4 are differentially expressed during schistosomula development, suggesting that the miRNA pathway is regulated at the transcript level and therefore may control gene expression during the life cycle of S. mansoni.
Applied Microbiology and Biotechnology | 2015
Daniel Menezes-Souza; Tiago Antônio de Oliveira Mendes; Ana Carolina de Araújo Leão; Matheus de Souza Gomes; Ricardo Toshio Fujiwara; Daniella Castanheira Bartholomeu
The correct and early identification of humans and dogs infected with Leishmania are key steps in the control of leishmaniasis. Additionally, a method with high sensitivity and specificity at low cost that allows the screening of a large number of samples would be extremely valuable. In this study, we analyzed the potential of mitogen-activated protein kinase 3 (MAPK3) and mitogen-activated protein kinase 4 (MAPK4) proteins from Leishmania braziliensis to serve as antigen candidates for the serodiagnosis of human visceral and tegumentary leishmaniasis, as well as canine visceral disease. Moreover, we mapped linear B-cell epitopes in these proteins and selected those epitopes with sequences that were divergent in the corresponding orthologs in Homo sapiens, in Canis familiaris, and in Trypanosoma cruzi. We compared the performance of these peptides with the recombinant protein using ELISA. Both MAPK3 and MAPK4 recombinant proteins showed better specificity in the immunodiagnosis of human and canine leishmaniasis than soluble parasite antigens and the EIE-leishmaniose-visceral-canina-bio-manguinhos (EIE-LVC) kit. Furthermore, the performance of this serodiagnosis assay was improved using synthetic peptides corresponding to B-cell epitopes derived from both proteins.
Memorias Do Instituto Oswaldo Cruz | 2014
Roberta Verciano Pereira; Helaine Graziele Santos Vieira; Victor Fernandes de Oliveira; Matheus de Souza Gomes; Liana Konovaloff Jannotti Passos; William de Castro Borges; Renata Guerra-Sá
Several genes related to the ubiquitin (Ub)-proteasome pathway, including those coding for proteasome subunits and conjugation enzymes, are differentially expressed during the Schistosoma mansoni life cycle. Although deubiquitinating enzymes have been reported to be negative regulators of protein ubiquitination and shown to play an important role in Ub-dependent processes, little is known about their role in S. mansoni . In this study, we analysed the Ub carboxyl-terminal hydrolase (UCHs) proteins found in the database of the parasite’s genome. An in silico ana- lysis (GeneDB and MEROPS) identified three different UCH family members in the genome, Sm UCH-L3, Sm UCH-L5 and Sm BAP-1 and a phylogenetic analysis confirmed the evolutionary conservation of the proteins. We performed quantitative reverse transcription-polymerase chain reaction and observed a differential expression profile for all of the investigated transcripts between the cercariae and adult worm stages. These results were corroborated by low rates of Z-Arg-Leu-Arg-Gly-Gly-AMC hydrolysis in a crude extract obtained from cercariae in parallel with high Ub conjugate levels in the same extracts. We suggest that the accumulation of ubiquitinated proteins in the cercaria and early schistosomulum stages is related to a decrease in 26S proteasome activity. Taken together, our data suggest that UCH family members contribute to regulating the activity of the Ub-proteasome system during the life cycle of this parasite.
Clinical and Vaccine Immunology | 2014
Daniel Menezes-Souza; Tiago Antônio de Oliveira Mendes; Matheus de Souza Gomes; João Luís Reis-Cunha; Ronaldo Alves Pinto Nagem; Cláudia Martins Carneiro; Eduardo Antonio Ferraz Coelho; Lúcia Maria da Cunha Galvão; Ricardo Toshio Fujiwara; Daniella Castanheira Bartholomeu
ABSTRACT Gold standard serological diagnostic methods focus on antigens that elicit a strong humoral immune response that is specific to a certain pathogen. In this study, we used bioinformatics approaches to identify linear B-cell epitopes that are conserved among Leishmania species but are divergent from the host species Homo sapiens and Canis familiaris and from Trypanosoma cruzi, the parasite that causes Chagas disease, to select potential targets for the immunodiagnosis of leishmaniasis. Using these criteria, we selected heat shock protein 83.1 of Leishmania braziliensis for this study. We predicted three linear B-cell epitopes in its sequence. These peptides and the recombinant heat shock protein 83.1 (rHSP83.1) were tested in enzyme-linked immunosorbent assays (ELISAs) against serum samples from patients with tegumentary leishmaniasis (TL) and visceral leishmaniasis (VL) and from dogs infected with Leishmania infantum (canine VL [CVL]). Our data show that rHSP83.1 is a promising target in the diagnosis of TL. We also identified specific epitopes derived from HSP83.1 that can be used in the diagnosis of human TL (peptide 3), both human and canine VL (peptides 1 and 3), and all TL, VL, and CVL clinical manifestations (peptide 3). Receiver operating characteristic (ROC) curves confirmed the superior performance of rHSP83.1 and peptides 1 and 3 compared to that of the soluble L. braziliensis antigen and the reference test kit for the diagnosis of CVL in Brazil (EIE-LVC kit; Bio-Manguinhos, Fiocruz). Our study thus provides proof-of-principle evidence of the feasibility of using bioinformatics to identify novel targets for the immunodiagnosis of parasitic diseases using proteins that are highly conserved throughout evolution.
Cytokine | 2016
Fabiana A. Zambuzi; Priscilla M. Cardoso-Silva; Milena Sobral Espíndola; Luana da Silva Soares; Leonardo J. Galvão-Lima; Verônica S. Brauer; Matheus de Souza Gomes; Laurence Rodrigues do Amaral; Matthew Schaller; Valdes Roberto Bollela; Fabiani G. Frantz
Although much research has been done related to biomarker discovery for tuberculosis infection, a set of biomarkers that can discriminate between active and latent TB diseases remains elusive. In the current study we correlate clinical aspects of TB disease with changes in the immune response as determined by biomarkers detected in plasma. Our study measured 18 molecules in human plasma in 17 patients with active disease (APTB), 14 individuals with latent tuberculosis infection (LTBI) and 16 uninfected controls (CTRL). We found that active tuberculosis patients have increased plasma levels of IL-6, IP-10, TNF-α, sCD163 and sCD14. Statistical analysis of these biomarkers indicated that simultaneous measurement of sCD14 and IL-6 was able to diagnose active tuberculosis infection with 83% accuracy. We also demonstrated that TNF-α and sCD163 were correlated with tuberculosis severity. We showed that the simultaneous detection of both plasma sCD14 and IL-6 is a promising diagnostic approach to identify APTB, and further, measurement of TNF-α and sCD163 can identify the most severe cases of tuberculosis.
Parasitology Research | 2011
Roberta Verciano Pereira; Fernanda J. Cabral; Matheus de Souza Gomes; Elio H. Baba; Liana K. Jannotti-Passos; Omar dos Santos Carvalho; Vanderlei Rodrigues; Robson José de Cássia Franco Afonso; William Castro-Borges; Renata Guerra-Sá
SUMO-dependent post-translational modification is implicated in a variety of cellular functions including gene expression regulation, nuclear sub-localization, and signal transduction. Conjugation of SUMO to other proteins occurs in a similar process to ubiquitination, which involves three classes of enzymes: an E1 activating, an E2 conjugating, and an E3 target-specific ligase. Ubc9 is the unique SUMO E2 enzyme known to conjugate SUMO to target substrates. Here, we present the molecular characterization of this enzyme and demonstrate its expression profile during the S. mansoni life cycle. We have used bioinformatic approaches to identify the SUMO-conjugating enzyme, the SmUbc9-like protein, in the Schistosoma mansoni databases. Quantitative RT-PCR was employed to measure the transcript levels of SUMO E2 in cercariae, adult worms, and in vitro cultivated schistosomula. Furthermore, recombinant SmUbc9 was expressed using the Gateway system, and antibodies raised in rats were used to measure SmUbc9 protein levels in S. mansoni stages by Western blotting. Our data revealed upregulation of the SmUbc9 transcript in early schistosomula followed by a marked differential gene expression in the other analyzed stages. The protein levels were maintained fairly constant suggesting a post-transcriptional regulation of the SmUbc9 mRNA. Our results show for the first time that S. mansoni employs a functional SUMO E2 enzyme, for the conjugation of the SUMO proteins to its target substrates.
PLOS Neglected Tropical Diseases | 2016
Renato Sathler-Avelar; Danielle Marquete Vitelli-Avelar; Armanda Moreira Mattoso-Barbosa; Marcelo Perdigão-de-Oliveira; Ronaldo Peres Costa; Silvana Maria Elói-Santos; Matheus de Souza Gomes; Laurence Rodrigues do Amaral; Andréa Teixeira-Carvalho; Olindo Assis Martins-Filho; Edward J. Dick; Gene B. Hubbard; Jane F. VandeBerg; John L. VandeBerg
Background Cynomolgus macaques (Macaca fascicularis) represent a feasible model for research on Chagas disease since natural T. cruzi infection in these primates leads to clinical outcomes similar to those observed in humans. However, it is still unknown whether these clinical similarities are accompanied by equivalent immunological characteristics in the two species. We have performed a detailed immunophenotypic analysis of circulating leukocytes together with systems biology approaches from 15 cynomolgus macaques naturally infected with T. cruzi (CH) presenting the chronic phase of Chagas disease to identify biomarkers that might be useful for clinical investigations. Methods and Findings Our data established that CH displayed increased expression of CD32+ and CD56+ in monocytes and enhanced frequency of NK Granzyme A+ cells as compared to non-infected controls (NI). Moreover, higher expression of CD54 and HLA-DR by T-cells, especially within the CD8+ subset, was the hallmark of CH. A high level of expression of Granzyme A and Perforin underscored the enhanced cytotoxicity-linked pattern of CD8+ T-lymphocytes from CH. Increased frequency of B-cells with up-regulated expression of Fc-γRII was also observed in CH. Complex and imbricate biomarker networks demonstrated that CH showed a shift towards cross-talk among cells of the adaptive immune system. Systems biology analysis further established monocytes and NK-cell phenotypes and the T-cell activation status, along with the Granzyme A expression by CD8+ T-cells, as the most reliable biomarkers of potential use for clinical applications. Conclusions Altogether, these findings demonstrated that the similarities in phenotypic features of circulating leukocytes observed in cynomolgus macaques and humans infected with T. cruzi further supports the use of these monkeys in preclinical toxicology and pharmacology studies applied to development and testing of new drugs for Chagas disease.
PLOS ONE | 2015
Milena Sobral Espíndola; Leonardo Judson Galvão de Lima; Luana da Silva Soares; Maira da Costa Cacemiro; Fabiana A. Zambuzi; Matheus de Souza Gomes; Laurence Rodrigues do Amaral; Valdes Roberto Bollela; Olindo Assis Martins-Filho; Fabiani G. Frantz
Background Successful highly active antiretroviral therapy (HAART) has changed the outcome of AIDS patients worldwide because the complete suppression of viremia improves health and prolongs life expectancy of HIV-1+ patients. However, little attention has been given to the immunological profile of patients under distinct HAART regimens. This work aimed to investigate the differences in the immunological pattern of HIV-1+ patients under the first- or second-line HAART in Brazil. Methods CD4+ T cell counts, Viral load, and plasma concentration of sCD14, sCD163, MCP-1, RANTES, IP-10, IL-1β, IL-6, TNF-α, IL-12, IFN-α, IFN-γ, IL-4, IL-5, and IL-10 were assessed for immunological characterization of the following clinical groups: Non-infected individuals (NI; n = 66), HIV-1+ untreated (HIV; n = 46), HIV-1+ treated with first-line HAART (HAART 1; n = 15); and HIV-1+ treated with second-line HAART (HAART 2; n = 15). Results We found that the immunological biosignature pattern of HAART 1 is similar to that of NI individuals, especially in patients presenting slow progression of the disease, while patients under HAART 2 remain in a moderate inflammatory state, which is similar to that of untreated HIV patients pattern. Network correlations revealed that differences in IP-10, TNF-α, IL-6, IFN-α, and IL-10 interactions were primordial in HIV disease and treatment. Heat map and decision tree analysis identified that IP-10>TNF-α>IFN-α were the best respective HAART segregation biomarkers. Conclusion HIV patients in different HAART regimens develop distinct immunological biosignature, introducing a novel perspective into disease outcome and potential new therapies that consider HAART patients as a heterogeneous group.