Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matheus Thomas Kuska is active.

Publication


Featured researches published by Matheus Thomas Kuska.


Functional Plant Biology | 2017

Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements

Stefan Thomas; Mirwaes Wahabzada; Matheus Thomas Kuska; Uwe Rascher; Anne-Katrin Mahlein

Hyperspectral imaging sensors are valuable tools for plant disease detection and plant phenotyping. Reflectance properties are influenced by plant pathogens and resistance responses, but changes of transmission characteristics of plants are less described. In this study we used simultaneously recorded reflectance and transmittance imaging data of resistant and susceptible barley genotypes that were inoculated with Blumeria graminis f. sp. hordei to evaluate the added value of imaging transmission, reflection and absorption for characterisation of disease development. These datasets were statistically analysed using principal component analysis, and compared with visual and molecular disease estimation. Reflection measurement performed significantly better for early detection of powdery mildew infection, colonies could be detected 2 days before symptoms became visible in RGB images. Transmission data could be used to detect powdery mildew 2 days after symptoms becoming visible in reflection based RGB images. Additionally distinct transmission changes occurred at 580-650nm for pixels containing disease symptoms. It could be shown that the additional information of the transmission data allows for a clearer spatial differentiation and localisation between powdery mildew symptoms and necrotic tissue on the leaf then purely reflectance based data. Thus the information of both measurement approaches are complementary: reflectance based measurements facilitate an early detection, and transmission measurements provide additional information to better understand and quantify the complex spatio-temporal dynamics of plant-pathogen interactions.


Phytopathology | 2017

Spectral Patterns Reveal Early Resistance Reactions of Barley Against Blumeria graminis f. sp. hordei

Matheus Thomas Kuska; Anna Brugger; Stefan Thomas; Mirwaes Wahabzada; Kristian Kersting; Erich-Christian Oerke; Ulrike Steiner; Anne-Katrin Mahlein

Differences in early plant-pathogen interactions are mainly characterized by using destructive methods. Optical sensors are advanced techniques for phenotyping host-pathogen interactions on different scales and for detecting subtle plant resistance responses against pathogens. A microscope with a hyperspectral camera was used to study interactions between Blumeria graminis f. sp. hordei and barley (Hordeum vulgare) genotypes with high susceptibility or resistance due to hypersensitive response (HR) and papilla formation. Qualitative and quantitative assessment of pathogen development was used to explain changes in hyperspectral signatures. Within 48 h after inoculation, genotype-specific changes in the green and red range (500 to 690 nm) and a blue shift of the red-edge inflection point were observed. Manual analysis indicated resistance-specific reflectance patterns from 1 to 3 days after inoculation. These changes could be linked to host plant modifications depending on individual host-pathogen interactions. Retrospective analysis of hyperspectral images revealed spectral characteristics of HR against B. graminis f. sp. hordei. For early HR detection, an advanced data mining approach localized HR spots before they became visible on the RGB images derived from hyperspectral imaging. The link among processes during pathogenesis and host resistance to changes in hyperspectral signatures provide evidence that sensor-based phenotyping is suitable to advance time-consuming and cost-expensive visual rating of plant disease resistances.


Sensors | 2018

Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection

Jan Behmann; Kelvin Acebron; Dzhaner Emin; Simon Bennertz; Shizue Matsubara; Stefan Thomas; David Bohnenkamp; Matheus Thomas Kuska; Jouni Jussila; Harri Salo; Anne-Katrin Mahlein; Uwe Rascher

Hyperspectral imaging sensors are promising tools for monitoring crop plants or vegetation in different environments. Information on physiology, architecture or biochemistry of plants can be assessed non-invasively and on different scales. For instance, hyperspectral sensors are implemented for stress detection in plant phenotyping processes or in precision agriculture. Up to date, a variety of non-imaging and imaging hyperspectral sensors is available. The measuring process and the handling of most of these sensors is rather complex. Thus, during the last years the demand for sensors with easy user operability arose. The present study introduces the novel hyperspectral camera Specim IQ from Specim (Oulu, Finland). The Specim IQ is a handheld push broom system with integrated operating system and controls. Basic data handling and data analysis processes, such as pre-processing and classification routines are implemented within the camera software. This study provides an introduction into the measurement pipeline of the Specim IQ as well as a radiometric performance comparison with a well-established hyperspectral imager. Case studies for the detection of powdery mildew on barley at the canopy scale and the spectral characterization of Arabidopsis thaliana mutants grown under stressed and non-stressed conditions are presented.


PLOS ONE | 2017

Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering

Mirwaes Wahabzada; Manuela Besser; Milad Khosravani; Matheus Thomas Kuska; Kristian Kersting; Anne-Katrin Mahlein; Ewa Stürmer

Wound healing is a complex and dynamic process with different distinct and overlapping phases from homeostasis, inflammation and proliferation to remodelling. Monitoring the healing response of injured tissue is of high importance for basic research and clinical practice. In traditional application, biological markers characterize normal and abnormal wound healing. Understanding functional relationships of these biological processes is essential for developing new treatment strategies. However, most of the present techniques (in vitro or in vivo) include invasive microscopic or analytical tissue sampling. In the present study, a non-invasive alternative for monitoring processes during wound healing is introduced. Within this context, hyperspectral imaging (HSI) is an emerging and innovative non-invasive imaging technique with different opportunities in medical applications. HSI acquires the spectral reflectance of an object, depending on its biochemical and structural characteristics. An in-vitro 3-dimensional (3-D) wound model was established and incubated without and with acute and chronic wound fluid (AWF, CWF), respectively. Hyperspectral images of each individual specimen of this 3-D wound model were assessed at day 0/5/10 in vitro, and reflectance spectra were evaluated. For analysing the complex hyperspectral data, an efficient unsupervised approach for clustering massive hyperspectral data was designed, based on efficient hierarchical decomposition of spectral information according to archetypal data points. It represents, to the best of our knowledge, the first application of an advanced Data Mining approach in context of non-invasive analysis of wounds using hyperspectral imagery. By this, temporal and spatial pattern of hyperspectral clusters were determined within the tissue discs and among the different treatments. Results from non-invasive imaging were compared to the number of cells in the various clusters, assessed by Hematoxylin/Eosin (H/E) staining. It was possible to correlate cell quantity and spectral reflectance during wound closure in a 3-D wound model in vitro.


Pure and Applied Chemistry | 2018

Potential of hyperspectral imaging to detect and identify the impact of chemical warfare compounds on plant tissue

Matheus Thomas Kuska; Jan Behmann; Anne-Katrin Mahlein

Abstract The OPCW Member states cover 98% of the global population and landmass. Regrettably, unanticipated chemical warfare agent assaults are reported during the last decades. In addition to the frequent threat situation, the sampling of bio-medical samples from these areas is critical and mainly depends on investigation opportunities of victims. Non-contact sensor technologies are desirable to enable a fast and secure estimation of a situation. Plants react on pollution because of their direct interaction with gases and it is assumed that chemical warfare agents influence plants, respectively. This impact can be analyzed for the detection and characterization of chemical warfare assaults. Nowadays technological progress in digital technologies provides new innovations in detectors, data analysis approaches and software availability which could improve the screening, monitoring and analysis of chemical warfare. Within this context hyperspectral imaging (HSI) is a promising method. Different applications from remote to close range sensing in medicine, food production, military, geography and agriculture do exist already. During the last years HSI showed high potential to determine and assess different plant parameters, e.g. abiotic and biotic stresses by recording the spectral reflectance of plants. Within the present manuscript, the basics principle of HSI as an innovative technique, aspects of recording and analyzing HSI data is presented using wild growing apple leaves which are treated with sulfuric acid, fire or heat. Resulting spectral signatures showed significant changes among the treatments. Especially the shortwave infrared was sensitive to changes due to the different treatments. Furthermore, the calculation of common spectral indices revealed differences due to the treatments which are not visible to the human eye. The results support HSI applications for the detection of chemical warfare agents and elucidate the impact of chemical warfare on plants.


Frontiers in Plant Science | 2018

Screening of barley resistance against powdery mildew by simultaneous high-throughput enzyme activity signature profiling and multispectral imaging

Matheus Thomas Kuska; Jan Behmann; Dominik K. Grosskinsky; Thomas Roitsch; Anne-Katrin Mahlein

Molecular marker analysis allow for a rapid and advanced pre-selection and resistance screenings in plant breeding processes. During the phenotyping process, optical sensors have proved their potential to determine and assess the function of the genotype of the breeding material. Thereby, biomarkers for specific disease resistance traits provide valuable information for calibrating optical sensor approaches during early plant-pathogen interactions. In this context, the combination of physiological, metabolic phenotyping and phenomic profiles could establish efficient identification and quantification of relevant genotypes within breeding processes. Experiments were conducted with near-isogenic lines of H. vulgare (susceptible, mildew locus o (mlo) and Mildew locus a (Mla) resistant). Multispectral imaging of barley plants was daily conducted 0–8 days after inoculation (dai) in a high-throughput facility with 10 wavelength bands from 400 to 1,000 nm. In parallel, the temporal dynamics of the activities of invertase isoenzymes, as key sink specific enzymes that irreversibly cleave the transport sugar sucrose into the hexose monomers, were profiled in a semi high-throughput approach. The activities of cell wall, cytosolic and vacuole invertase revealed specific dynamics of the activity signatures for susceptible genotypes and genotypes with mlo and Mla based resistances 0–120 hours after inoculation (hai). These patterns could be used to differentiate between interaction types and revealed an early influence of Blumeria graminis f.sp. hordei (Bgh) conidia on the specific invertase activity already 0.5 hai. During this early powdery mildew pathogenesis, the reflectance intensity increased in the blue bands and at 690 nm. The Mla resistant plants showed an increased reflectance at 680 and 710 nm and a decreased reflectance in the near infrared bands from 3 dai. Applying a Support Vector Machine classification as a supervised machine learning approach, the pixelwise identification and quantification of powdery mildew diseased barley tissue and hypersensitive response spots were established. This enables an automatic identification of the barley-powdery mildew interaction. The study established a proof-of-concept for plant resistance phenotyping with multispectral imaging in high-throughput. The combination of invertase analysis and multispectral imaging showed to be a complementing validation system. This will provide a deeper understanding of optical data and its implementation into disease resistance screening.


Annual Review of Phytopathology | 2018

Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art

A.-K. Mahlein; Matheus Thomas Kuska; Jan Behmann; G. Polder; A. Walter

Plant disease detection represents a tremendous challenge for research and practical applications. Visual assessment by human raters is time-consuming, expensive, and error prone. Disease rating and plant protection need new and innovative techniques to address forthcoming challenges and trends in agricultural production that require more precision than ever before. Within this context, hyperspectral sensors and imaging techniques-intrinsically tied to efficient data analysis approaches-have shown an enormous potential to provide new insights into plant-pathogen interactions and for the detection of plant diseases. This article provides an overview of hyperspectral sensors and imaging technologies for assessing compatible and incompatible plant-pathogen interactions. Within the progress of digital technologies, the vision, which is increasingly discussed in the society and industry, includes smart and intuitive solutions for assessing plant features in plant phenotyping or for making decisions on plant protection measures in the context of precision agriculture.


Plant Methods | 2015

Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions

Matheus Thomas Kuska; Mirwaes Wahabzada; Marlene Leucker; Heinz-Wilhelm Dehne; Kristian Kersting; Erich-Christian Oerke; Ulrike Steiner; Anne-Katrin Mahlein


Journal of Plant Diseases and Protection | 2018

Benefits of hyperspectral imaging for plant disease detection and plant protection: a technical perspective

Stefan Thomas; Matheus Thomas Kuska; David Bohnenkamp; Anna Brugger; Elias Alisaac; Mirwaes Wahabzada; Jan Behmann; Anne-Katrin Mahlein


Journal of Plant Diseases and Protection | 2017

Impact of compatible and incompatible barley—Blumeria graminis f.sp. hordei interactions on chlorophyll fluorescence parameters

Anna Brugger; Matheus Thomas Kuska; Anne-Katrin Mahlein

Collaboration


Dive into the Matheus Thomas Kuska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristian Kersting

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge