Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathew A. Vanderklift is active.

Publication


Featured researches published by Mathew A. Vanderklift.


Oecologia | 2003

Sources of variation in consumer-diet δ15N enrichment: a meta-analysis

Mathew A. Vanderklift; Sergine Ponsard

Measurements of δ15N of consumers are usually higher than those of their diet. This general pattern is widely used to make inferences about trophic relationships in ecological studies, although the underlying mechanisms causing the pattern are poorly understood. However, there can be substantial variation in consumer-diet δ15N enrichment within this general pattern. We conducted an extensive literature review, which yielded 134 estimates from controlled studies of consumer-diet δ15N enrichment, to test the significance of several potential sources of variation by means of meta-analyses. We found patterns related to processes of nitrogen assimilation and excretion. There was a significant effect of the main biochemical form of nitrogenous waste: ammonotelic organisms show lower δ15N enrichment than ureotelic or uricotelic organisms. There were no significant differences between animals feeding on plant food, animal food, or manufactured mixtures, but detritivores yielded significantly lower estimates of enrichment. δ15N enrichment was found to increase significantly with the C:N ratio of the diet, suggesting that a nitrogen-poor diet can have an effect similar to that already documented for fasting organisms. There were also differences among taxonomic classes: molluscs and crustaceans generally yielded lower δ15N enrichment. The lower δ15N enrichment might be related to the fact that molluscs and crustaceans excrete mainly ammonia, or to the fact that many were detritivores. Organisms inhabiting marine environments yielded significantly lower estimates of δ15N enrichment than organisms inhabiting terrestrial or freshwater environments, a pattern that was influenced by the number of marine, ammonotelic, crustaceans and molluscs. Overall, our analyses point to several important sources of variation in δ15N enrichment and suggest that the most important of them are the main biochemical form of nitrogen excretion and nutritional status. The variance of estimates of δ15N enrichment, as well as the fact that enrichment may be different in certain groups of organisms should be taken into account in statistical approaches for studying diet and trophic relationships.


Ecological Applications | 1999

SELECTING MARINE RESERVES USING HABITATS AND SPECIES ASSEMBLAGES AS SURROGATES FOR BIOLOGICAL DIVERSITY

Trevor Ward; Mathew A. Vanderklift; A. O. Nicholls; R. A. Kenchington

We compare the value of using habitat categories and species assemblages as surrogates for marine biological diversity in the context of choosing a set of representative areas for a marine reserve network. Habitat categories were based on interpretation of aerial photographs and maps, and on local knowledge. Species assemblages were created from comprehensive survey data on 977 taxa (mainly species), derived from an intensive three- year study of a temperate marine embayment, and classified into plant, fish, and invertebrate assemblages. Reserves were selected using a heuristic iterative algorithm to simulate a marine reserve network based on 10-80% representation of each surrogate. The effective- ness of each surrogate was evaluated by comparing the number of taxa that would be coincidentally included in each simulated reserve for the bay. Areas selected to represent 10% or 20% of the surrogates were best chosen using fish or invertebrate assemblages, because by spatial coincidence, they included 60-80% of all available taxa. However, areas selected to represent ?40% of the surrogates were generally best derived from habitat categories, because they included ?93% of all available taxa. Plant assemblages were generally poor surrogates for overall species richness. These findings suggest that habitat- level surrogates may be a highly cost-effective method for initial identification of high- priority areas to manage marine diversity of coastal ecosystems.


Ecology Letters | 2012

Global patterns in the impact of marine herbivores on benthic primary producers

Alistair G. B. Poore; Alexandra H. Campbell; Ross A. Coleman; Graham J. Edgar; Jormalainen; Pamela L. Reynolds; Erik E. Sotka; John J. Stachowicz; Taylor Rb; Mathew A. Vanderklift; J. E. Duffy

Despite the importance of consumers in structuring communities, and the widespread assumption that consumption is strongest at low latitudes, empirical tests for global scale patterns in the magnitude of consumer impacts are limited. In marine systems, the long tradition of experimentally excluding herbivores in their natural environments allows consumer impacts to be quantified on global scales using consistent methodology. We present a quantitative synthesis of 613 marine herbivore exclusion experiments to test the influence of consumer traits, producer traits and the environment on the strength of herbivore impacts on benthic producers. Across the globe, marine herbivores profoundly reduced producer abundance (by 68% on average), with strongest effects in rocky intertidal habitats and the weakest effects on habitats dominated by vascular plants. Unexpectedly, we found little or no influence of latitude or mean annual water temperature. Instead, herbivore impacts differed most consistently among producer taxonomic and morphological groups. Our results show that grazing impacts on plant abundance are better predicted by producer traits than by large-scale variation in habitat or mean temperature, and that there is a previously unrecognised degree of phylogenetic conservatism in producer susceptibility to consumption.


Science | 2016

Climate-driven regime shift of a temperate marine ecosystem

Thomas Wernberg; Scott Bennett; Russell C. Babcock; Thibaut de Bettignies; Katherine Cure; Martial Depczynski; Francois Dufois; Jane Fromont; Christopher J. Fulton; Renae Hovey; Euan S. Harvey; Thomas H. Holmes; Gary A. Kendrick; Ben Radford; Julia Santana-Garcon; Benjamin J. Saunders; Dan A. Smale; Mads S. Thomsen; Chenae A. Tuckett; Fernando Tuya; Mathew A. Vanderklift; Shaun K. Wilson

No turning back? Ecosystems over time have endured much disturbance, yet they tend to remain intact, a characteristic we call resilience. Though many systems have been lost and destroyed, for systems that remain physically intact, there is debate as to whether changing temperatures will result in shifts or collapses. Wernburg et al. show that extreme warming of a temperate kelp forest off Australia resulted not only in its collapse, but also in a shift in community composition that brought about an increase in herbivorous tropical fishes that prevent the reestablishment of kelp. Thus, many systems may not be resilient to the rapid climate change that we face. Science, this issue p. 169 Rapid warming tropicalizes a temperate kelp forest. Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.


Biological Conservation | 1998

Use of assemblages derived from different taxonomic levels to select areas for conserving marine biodiversity

Mathew A. Vanderklift; Trevor Ward; J.C Phillips

One of the main reasons for establishing networks of marine protected areas (MPAs) is to conserve and manage biodiversity. Of the many elements to biodiversity, representation of species diversity is a common target. As preparing a complete inventory of all marine species is impractical, surrogates to represent species diversity have been sought. One such surrogate is lower taxonomic resolution. Based on the distributions of 977 taxa of fish, invertebrates and plants in a temperate marine bay, we used species richness as a measure of biodiversity to examine the value of using assemblages generated from species, genus, family and class level data as surrogates in a selection process for MPAs. Genus assemblages resulted in selection of areas with a similar number of species to those obtained by using species assemblages, provided the selected set of areas represented 60% or more of the assemblage occurrences. Results using family and class assemblages varied. Because spatial scale, geographic location and the identity of the taxonomic group are all likely to affect the efficacy of using lower taxonomic resolution as a surrogate for species diversity, we argue that there is no universally preferred level. This requires further study at different spatial scales and among different locations, using a range of taxonomic groups, and we therefore suggest that the use of lower taxonomic resolution survey data to select MPAs should be approached with caution.


Marine and Freshwater Research | 2004

Variation in abundances of herbivorous invertebrates in temperate subtidal rocky reef habitats

Mathew A. Vanderklift; Gary A. Kendrick

The present study assessed variation in the abundances of large herbivorous invertebrates in south-western Australia. There was some habitat partitioning between different parts of the reef: of the most frequently recorded species, the sea urchins Phyllacanthus irregularis and Centrostephanus tenuispinus were found primarily at the base of steep rock faces, whereas the gastropods Turbo torquatus and Australium squamifera were found primarily on open sections of reef. The sea urchin Heliocidaris erythrogramma was evenly distributed between these two habitats. For C. tenuispinus and H. erythrogramma, differences among locations (separated by tens to hundreds of kilometers) were the main source of variation in abundances. Phyllacanthus irregularis was more evenly distributed among locations. Abundances of sea urchins at each reef varied little over 26 months, suggesting low mortality and low recruitment. Turbo torquatus and A. squamifera varied significantly in abundance among reefs separated by < 10 km, although these differences were influenced by fluctuations over time. Broad patterns in abundances were evident: overall, abundances of herbivorous invertebrates were low, but certain areas supported high abundances. This suggests that herbivory may be a minor process in this region; however, the importance of herbivory at reefs with and without high abundances of herbivores deserves further attention.


PLOS ONE | 2011

Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits.

Adriana Vergés; Mathew A. Vanderklift; Christopher Doropoulos; Glenn A. Hyndes

Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems.


Marine and Freshwater Research | 2012

Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: Examples from Florida Bay and Shark Bay

James W. Fourqurean; Gary A. Kendrick; Laurel S. Collins; Randolph M. Chambers; Mathew A. Vanderklift

Seagrass meadows in Florida Bay and Shark Bay contain substantial stores of both organic carbon and nutrients. Soils from both systems are predominantly calcium carbonate, with an average of 82.1% CaCO3 in Florida Bay compared with 71.3% in Shark Bay. Soils from Shark Bay had, on average, 21% higher organic carbon content and 35% higher phosphorus content than Florida Bay. Further, soils from Shark Bay had lower mean dry bulk density (0.78 ± 0.01 g mL–1) than those from Florida Bay (0.84 ± 0.02 mg mL–1). The most hypersaline regions of both bays had higher organic carbon content in surficial soils. Profiles of organic carbon and phosphorus from Florida Bay indicate that this system has experienced an increase in P delivery and primary productivity over the last century; in contrast, decreasing organic carbon and phosphorus with depth in the soil profiles in Shark Bay point to a decrease in phosphorus delivery and primary productivity over the last 1000 y. The total ecosystem stocks of stored organic C in Florida Bay averages 163.5 MgCorg ha–1, lower than the average of 243.0 MgCorg ha–1 for Shark Bay; but these values place Shark and Florida Bays among the global hotspots for organic C storage in coastal ecosystems.


BioScience | 2016

Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows

Glenn A. Hyndes; Kenneth L. Heck; Adriana Vergés; Euan S. Harvey; Gary A. Kendrick; Paul S. Lavery; Kathryn McMahon; Robert J. Orth; Alan Pearce; Mathew A. Vanderklift; Thomas Wernberg; Scott Whiting; Shaun K. Wilson

Abstract Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more direct-consumption-based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions.


Journal of Phycology | 2010

CONTRIBUTION OF TEMPORAL AND SPATIAL COMPONENTS TO MORPHOLOGICAL VARIATION IN THE KELP ECKLONIA (LAMINARIALES)1

Thomas Wernberg; Mathew A. Vanderklift

Environmental conditions that are known to cause morphological variation in algae (e.g., wave exposure) often vary in both space and time and are superimposed onto the distinct seasonal growth cycles of most temperate macroalgae. We tested the hypothesis that the morphology of the small kelp Ecklonia radiata (C. Agardh) J. Agardh is the product of an interaction between site (five reefs of different wave exposure) and the time of year that sampling occurs (summer vs. winter 2004). We determined that wave exposure had a strong directional effect on kelp morphology, with “Reefs” accounting for up to 43.4% of variation in individual morphological characters. “Times” had a narrowly nonsignificant effect on overall morphology but accounted for up to 31% of variation in individual characters. Many characters were affected by wave exposure, whereas only a few were (strongly) affected by time (e.g., thallus biomass). Interactive effects between “Reefs” and “Times” were generally small, accounting for 15.8% of variation in lamina thickness, but much less for most other characters. We conclude that wave exposure exerts a strong control over the morphology of E. radiata, but that the nature of the effect depends on the magnitude of wave exposure. We also conclude that most of the effects of wave exposure are consistent through time and do not interact with cycles of growth and pruning in any major way.

Collaboration


Dive into the Mathew A. Vanderklift's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary A. Kendrick

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell C. Babcock

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Damian P. Thomson

CSIRO Marine and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Diana I. Walker

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Douglas Bearham

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Hector M. Lozano-Montes

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Trevor Ward

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge