Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathew Littlejohn is active.

Publication


Featured researches published by Mathew Littlejohn.


Nature Genetics | 2011

Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature

Latifa Karim; Haruko Takeda; Li Lin; Tom Druet; Juan A C Arias; Denis Baurain; Nadine Cambisano; Stephen R. Davis; Frédéric Farnir; Bernard Grisart; Bevin Harris; Michael Keehan; Mathew Littlejohn; Richard Spelman; Michel Georges; Wouter Coppieters

We report mapping of a quantitative trait locus (QTL) with a major effect on bovine stature to a ∼780-kb interval using a Hidden Markov Model–based approach that simultaneously exploits linkage and linkage disequilibrium. We re-sequenced the interval in six sires with known QTL genotype and identified 13 clustered candidate quantitative trait nucleotides (QTNs) out of >9,572 discovered variants. We eliminated five candidate QTNs by studying the phenotypic effect of a recombinant haplotype identified in a breed diversity panel. We show that the QTL influences fetal expression of seven of the nine genes mapping to the ∼780-kb interval. We further show that two of the eight candidate QTNs, mapping to the PLAG1-CHCHD7 intergenic region, influence bidirectional promoter strength and affect binding of nuclear factors. By performing expression QTL analyses, we identified a splice site variant in CHCHD7 and exploited this naturally occurring null allele to exclude CHCHD7 as single causative gene.


BMC Genomics | 2010

Modulation of the maternal immune system by the pre-implantation embryo

C.G. Walker; S. Meier; Mathew Littlejohn; Klaus Lehnert; J.R. Roche; Murray D. Mitchell

BackgroundA large proportion of pregnancy losses occur during the pre-implantation period, when the developing embryo is elongating rapidly and signalling its presence to the maternal system. The molecular mechanisms that prevent luteolysis and support embryo survival within the maternal environment are not well understood. To gain a more complete picture of these molecular events, genome-wide transcriptional profiles of reproductive day 17 endometrial tissue were determined in pregnant and cyclic Holstein-Friesian dairy cattle.ResultsMicroarray analyses revealed 1,839 and 1,189 differentially expressed transcripts between pregnant and cyclic animals (with ≥ 1.5 fold change in expression; P-value < 0.05, MTC Benjamini-Hochberg) in caruncular and intercaruncular endometrium respectively. Gene ontology and biological pathway analysis of differentially expressed genes revealed enrichment for genes involved in interferon signalling and modulation of the immune response in pregnant animals.ConclusionThe maternal immune system actively surveys the uterine environment during early pregnancy. The embryo modulates this response inducing the expression of endometrial molecules that suppress the immune response and promote maternal tolerance to the embryo. During this period of local immune suppression, genes of the innate immune response (in particular, antimicrobial genes) may function to protect the uterus against infection.


BMC Molecular Biology | 2009

Evaluation of real-time PCR endogenous control genes for analysis of gene expression in bovine endometrium

C.G. Walker; S. Meier; Murray D. Mitchell; J.R. Roche; Mathew Littlejohn

BackgroundQuantitative real-time PCR gene expression results are generally normalised using endogenous control genes. These reference genes should be expressed at a constant level across all sample groups in a study, and should not be influenced by study treatments or conditions. There has been no systematic investigation of endogenous control genes for bovine endometrium to date. The suitability of both commonly used and novel endogenous control genes was evaluated in this study, with the latter being selected from stably expressed transcripts identified through microarray analysis of bovine endometrium. Fifteen candidate endogenous control genes were assessed across different tissue subtypes in pregnant and cycling Holstein-Friesian dairy cows from two divergent genetic backgrounds.ResultsThe expression profiles of five commonly used endogenous control genes (GAPDH, PPIA, RPS9, RPS15A, and UXT) and 10 experimentally derived candidate endogenous control genes (SUZ12, C2ORF29, ZNF131, ACTR1A, HDAC1, SLC30A6, CNOT7, DNAJC17, BBS2, and RANBP10) were analysed across 44 samples to determine the most stably expressed gene. Gene stability was assessed using the statistical algorithms GeNorm and Normfinder. All genes presented with low overall variability (0.87 to 1.48% CV of Cq). However, when used to normalise a differentially expressed gene (oxytocin receptor - OXTR) in the samples, the reported relative gene expression levels were significantly affected by the control gene chosen. Based on the results of this analysis, SUZ12 is proposed as the most appropriate control gene for use in bovine endometrium during early pregnancy or the oestrus cycle.ConclusionThis study establishes the suitability of novel endogenous control genes for comparing expression levels in endometrial tissues of pregnant and cycling bovines, and demonstrates the utility of microarray analysis as a method for identifying endogenous control gene candidates.


Physiological Genomics | 2010

Effects of reduced frequency of milk removal on gene expression in the bovine mammary gland

Mathew Littlejohn; C.G. Walker; Hamish Ward; Klaus Lehnert; Russell G. Snell; Gwyn A Verkerk; Richard Spelman; Dave A Clark; S.R. Davis

Regulation of milk synthesis and secretion is controlled mostly through local (intramammary) mechanisms. To gain insight into the molecular pathways comprising this response, an analysis of mammary gene expression was conducted in 12 lactating cows shifted from twice daily to once daily milking. Tissues were sampled by biopsy from adjacent mammary quarters of these animals during the two milking frequencies, allowing changes in gene expression to be assessed within each animal. Using bovine-specific, oligonucleotide arrays representing 21,495 unique transcripts, a range of differentially expressed genes were found as a result of less frequent milk removal, constituting transcripts and pathways related to apoptotic signaling (NF-kappaB, JUN, ATF3, IGFBP5, TNFSF12A) mechanical stress and epithelial tight junction synthesis (CYR61, CTGF, THBS1, CLDN4, CLDN8), and downregulated milk synthesis (LALBA, B4GALT1, UGP2, CSN2, GPAM, LPL). Quantitative real-time PCR was used to assess the expression of 13 genes in the study, and all 13 of these were correlated (P < 0.05) with values derived from array analysis. It can be concluded that the physiological changes that occur in the bovine mammary gland as a result of reduced milk removal frequency likely comprise the earliest stages of the involution response and that mechano-signal transduction cascades associated with udder distension may play a role in triggering these events.


Physiological Genomics | 2012

Endometrial gene expression during early pregnancy differs between fertile and subfertile dairy cow strains

C.G. Walker; Mathew Littlejohn; Murray D. Mitchell; J.R. Roche; S. Meier

A receptive uterine environment is a key component in determining a successful reproductive outcome. We tested the hypothesis that endometrial gene expression patterns differ in fertile and subfertile dairy cow strains. Twelve lactating dairy cattle of strains characterized as having fertile (n = 6) and subfertile (n = 6) phenotypes underwent embryo transfer on day 7 of the reproductive cycle. Caruncular and intercaruncular endometrial tissue was obtained at day 17 of pregnancy, and microarrays used to characterize transcriptional profiles. Statistical analysis of microarray data at day 17 of pregnancy revealed 482 and 1,021 differentially expressed transcripts (P value < 0.05) between fertile and subfertile dairy cow strains in intercaruncular and caruncular tissue, respectively. Functional analysis revealed enrichment for several pathways involved in key reproductive processes, including the immune response to pregnancy, luteolysis, and support of embryo growth and development, and in particular, regulation of histotroph composition. Genes implicated in the process of immune tolerance to the embryo were downregulated in subfertile cows, as were genes involved in preventing luteolysis and genes that promote embryo growth and development. This study provides strong evidence that the endometrial gene expression profile may contribute to the inferior reproductive performance of the subfertile dairy cow strain.


Nature Communications | 2014

Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle

Mathew Littlejohn; Kristen Henty; Kathryn Tiplady; Thomas Johnson; Chad Harland; Thomas Lopdell; Richard Sherlock; Wanbo Li; Steven D. Lukefahr; Bruce C. Shanks; Dorian J. Garrick; Russell G. Snell; Richard Spelman; Stephen R. Davis

Lactation, hair development and homeothermy are characteristic evolutionary features that define mammals from other vertebrate species. Here we describe the discovery of two autosomal dominant mutations with antagonistic, pleiotropic effects on all three of these biological processes, mediated through the prolactin signalling pathway. Most conspicuously, mutations in prolactin (PRL) and its receptor (PRLR) have an impact on thermoregulation and hair morphology phenotypes, giving prominence to this pathway outside of its classical roles in lactation.


Scientific Reports | 2016

Sequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition.

Mathew Littlejohn; Kathryn Tiplady; Tania Fink; Klaus Lehnert; Thomas Lopdell; Thomas Johnson; Christine Couldrey; Michael Keehan; Richard Sherlock; Chad Harland; Andrew Scott; Russell G. Snell; Stephen R. Davis; Richard Spelman

The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for secretion into milk. The fat content of milk varies widely both between and within species, and recent independent genome-wide association studies have highlighted a milk fat percentage quantitative trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been proposed to underlie these signals, the causative status of these genes has not been functionally confirmed. To investigate this QTL in detail, we report genome sequence-based imputation and association mapping in a population of 64,244 taurine cattle. This analysis reveals a cluster of 17 non-coding variants spanning MGST1 that are highly associated with milk fat percentage, and a range of other milk composition traits. Further, we exploit a high-depth mammary RNA sequence dataset to conduct expression QTL (eQTL) mapping in 375 lactating cows, revealing a strong MGST1 eQTL underpinning these effects. These data demonstrate the utility of DNA and RNA sequence-based association mapping, and implicate MGST1, a gene with no obvious mechanistic relationship to milk composition regulation, as causally involved in these processes.


PLOS ONE | 2014

Expression Variants of the Lipogenic AGPAT6 Gene Affect Diverse Milk Composition Phenotypes in Bos taurus

Mathew Littlejohn; Kathryn Tiplady; Thomas Lopdell; Tania A. Law; Andrew Scott; Chad Harland; Ric Sherlock; Kristen Henty; Vlad Obolonkin; Klaus Lehnert; Alistair MacGibbon; Richard Spelman; Stephen R. Davis; Russell G. Snell

Milk is composed of a complex mixture of lipids, proteins, carbohydrates and various vitamins and minerals as a source of nutrition for young mammals. The composition of milk varies between individuals, with lipid composition in particular being highly heritable. Recent reports have highlighted a region of bovine chromosome 27 harbouring variants affecting milk fat percentage and fatty acid content. We aimed to further investigate this locus in two independent cattle populations, consisting of a Holstein-Friesian x Jersey crossbreed pedigree of 711 F2 cows, and a collection of 32,530 mixed ancestry Bos taurus cows. Bayesian genome-wide association mapping using markers imputed from the Illumina BovineHD chip revealed a large quantitative trait locus (QTL) for milk fat percentage on chromosome 27, present in both populations. We also investigated a range of other milk composition phenotypes, and report additional associations at this locus for fat yield, protein percentage and yield, lactose percentage and yield, milk volume, and the proportions of numerous milk fatty acids. We then used mammary RNA sequence data from 212 lactating cows to assess the transcript abundance of genes located in the milk fat percentage QTL interval. This analysis revealed a strong eQTL for AGPAT6, demonstrating that high milk fat percentage genotype is also additively associated with increased expression of the AGPAT6 gene. Finally, we used whole genome sequence data from six F1 sires to target a panel of novel AGPAT6 locus variants for genotyping in the F2 crossbreed population. Association analysis of 58 of these variants revealed highly significant association for polymorphisms mapping to the 5′UTR exons and intron 1 of AGPAT6. Taken together, these data suggest that variants affecting the expression of AGPAT6 are causally involved in differential milk fat synthesis, with pleiotropic consequences for a diverse range of other milk components.


Journal of Dairy Science | 2009

Genetic strain and reproductive status affect endometrial fatty acid concentrations

S. Meier; A.J. Peterson; Murray D. Mitchell; Mathew Littlejohn; C.G. Walker; J.R. Roche

Poor reproductive performance limits cow longevity in seasonal, pasture-based dairy systems. Few differences in ovarian dynamics have been reported in different strains of Holstein-Friesian cows, implying that the uterine environment may be a key component determining reproductive success. To test the hypothesis that the uterine environment differs among genetic strains of the Holstein-Friesian cow, endometrial fatty acids (FA) were analyzed from New Zealand (NZ), and North American (NA) Holstein-Friesian cows. The effect of reproductive status was also investigated, with cows from both Holstein-Friesian strains slaughtered on either d 17 of the estrous cycle (termed cyclic) or d 17 of pregnancy (after embryo transfer; termed pregnant). Endometrial tissues were collected from 22 cows (NZ pregnant, n = 6; NZ cyclic, n = 4; NA pregnant, n = 6; NA cyclic, n = 6), and FA composition was analyzed. Daily plasma progesterone concentrations, milk production, milk FA composition, body weight, and body condition score were determined. Milk yield (4% fat-corrected milk) was similar for the NZ (28.5 kg/d) and NA (29.3 kg/d; SE 2.07 kg/d) cows, but NZ cows had a greater mean milk fat percentage. Mean plasma progesterone concentrations were significantly greater in NZ cows. Plasma progesterone concentrations were similar in the pregnant and cyclic groups. Mean length of the trophoblast recovered from the pregnant cows (NZ: 20.8 +/- 2.84 cm; NA: 27.9 +/- 10.23 cm) was not affected by genetic strain. Endometrial tissues from NZ cows contained greater concentrations of C17:0, C20:3n-3, and total polyunsaturated FA. The endometria from pregnant cows contained greater concentrations of C17:0, C20:2, and C20:3n-6, and less C20:1, C20:2, C20:5n-3. The observed changes in endometrial FA between Holstein-Friesian cows of different genetic origins or reproductive states may reflect differences in endometrial function and may affect reproductive function.


Scientific Reports | 2017

Functional confirmation of PLAG1 as the candidate causative gene underlying major pleiotropic effects on body weight and milk characteristics

Tania Fink; Kathryn Tiplady; Thomas Lopdell; Thomas Johnson; Russell G. Snell; Richard Spelman; Stephen R. Davis; Mathew Littlejohn

A major pleiotropic quantitative trait locus (QTL) located at ~25 Mbp on bovine chromosome 14 affects a myriad of growth and developmental traits in Bos taurus and indicus breeds. These QTL have been attributed to two functional variants in the bidirectional promoter of PLAG1 and CHCHD7. Although PLAG1 is a good candidate for mediating these effects, its role remains uncertain given that these variants are also associated with expression of five additional genes at the broader locus. In the current study, we conducted expression QTL (eQTL) mapping of this region using a large, high depth mammary RNAseq dataset representing 375 lactating cows. Here we show that of the seven previously implicated genes, only PLAG1 and LYN are differentially expressed by QTL genotype, and only PLAG1 bears the same association signature of the growth and body weight QTLs. For the first time, we also report significant association of PLAG1 genotype with milk production traits, including milk fat, volume, and protein yield. Collectively, these data strongly suggest PLAG1 as the causative gene underlying this diverse range of traits, and demonstrate new effects for the locus on lactation phenotypes.

Collaboration


Dive into the Mathew Littlejohn's collaboration.

Top Co-Authors

Avatar

Kathryn Tiplady

Livestock Improvement Corporation

View shared research outputs
Top Co-Authors

Avatar

Richard Spelman

Livestock Improvement Corporation

View shared research outputs
Top Co-Authors

Avatar

Michael Keehan

Livestock Improvement Corporation

View shared research outputs
Top Co-Authors

Avatar

Thomas Johnson

Livestock Improvement Corporation

View shared research outputs
Top Co-Authors

Avatar

Thomas Lopdell

Livestock Improvement Corporation

View shared research outputs
Top Co-Authors

Avatar

C.G. Walker

University of Auckland

View shared research outputs
Top Co-Authors

Avatar

Christine Couldrey

Livestock Improvement Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.R. Davis

Livestock Improvement Corporation

View shared research outputs
Top Co-Authors

Avatar

Ric Sherlock

Livestock Improvement Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge