Mathieu Beraneck
Paris Descartes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathieu Beraneck.
Neuroreport | 2000
Nicolas Vibert; Mathieu Beraneck; Bantikyan A; Pierre-Paul Vidal
The progressive disappearance of the postural and oculomotor syndrome triggered by unilateral labyrinthectomy (vestibular compensation) is a model of plasticity in the adult central nervous system. This recovery may involve modifications of the pharmacological profile of central vestibular neurones, in particular their sensitivity to inhibitory amino acids. We therefore compared the sensitivity of medial vestibular nucleus neurones to glycine and muscimol in slices taken either from control animals, or from guinea-pigs labyrinthectomized 3 days before. We demonstrate that the loss of excitatory inputs experienced by the ipsilesional vestibular neurones induces a decrease in their sensitivity to inhibitory amino acids. These pharmacological changes should facilitate the recovery of a normal balance between the average resting discharge of neurones in both vestibular nuclei.
The Journal of Neuroscience | 2007
Mathieu Beraneck; Sandra Pfanzelt; Isabelle Vassias; Martin Rohregger; Nicolas Vibert; Pierre-Paul Vidal; Lee E. Moore; Hans Straka
Central vestibular neurons process head movement-related sensory signals over a wide dynamic range. In the isolated frog whole brain, second-order vestibular neurons were identified by monosynaptic responses after electrical stimulation of individual semicircular canal nerve branches. Neurons were classified as tonic or phasic vestibular neurons based on their different discharge patterns in response to positive current steps. With increasing frequency of sinusoidally modulated current injections, up to 100 Hz, there was a concomitant decrease in the impedance of tonic vestibular neurons. Subthreshold responses as well as spike discharge showed classical low-pass filter-like characteristics with corner frequencies ranging from 5 to 20 Hz. In contrast, the impedance of phasic vestibular neurons was relatively constant over a wider range of frequencies or showed a resonance at ∼40 Hz. Above spike threshold, single spikes of phasic neurons were synchronized with the sinusoidal stimulation between ∼20 and 50 Hz, thus showing characteristic bandpass filter-like properties. Both the subthreshold resonance and bandpass filter-like discharge pattern depend on the activation of an ID potassium conductance. External current or synaptic stimulation that produced impedance increases (i.e., depolarization in tonic or hyperpolarization in phasic neurons) had opposite and complementary effects on the responses of the two types of neurons. Thus, membrane depolarization by current steps or repetitive synaptic excitation amplified synaptic inputs in tonic vestibular neurons and reduced them in phasic neurons. These differential, opposite membrane response properties render the two neuronal types particularly suitable for either integration (tonic neurons) or signal detection (phasic neurons), respectively, and dampens variations of the resting membrane potential in the latter.
Frontiers in Neurology | 2012
Mathieu Beraneck; Erwin Idoux
The sensorimotor transformations performed by central vestibular neurons constantly adapt as the animal faces conflicting sensory information or sustains injuries. To ensure the homeostasis of vestibular-related functions, neural changes could in part rely on the regulation of 2° VN intrinsic properties. Here we review evidence that demonstrates modulation and plasticity of central vestibular neurons’ intrinsic properties. We first present the partition of Rodents’ vestibular neurons into distinct subtypes, namely type A and type B. Then, we focus on the respective properties of each type, their putative roles in vestibular functions, fast control by neuromodulators and persistent modifications following a lesion. The intrinsic properties of central vestibular neurons can be swiftly modulated by a wealth of neuromodulators to adapt rapidly to temporary changes of ecophysiological surroundings. To illustrate how intrinsic excitability can be rapidly modified in physiological conditions and therefore be therapeutic targets, we present the modulation of vestibular reflexes in relation to the variations of the neuromodulatory inputs during the sleep/wake cycle. On the other hand, intrinsic properties can also be slowly, yet permanently, modified in response to major perturbations, e.g., after unilateral labyrinthectomy (UL). We revisit the experimental evidence, which demonstrates that drastic alterations of the central vestibular neurons’ intrinsic properties occur following UL, with a slow time course, more on par with the compensation of dynamic deficits than static ones. Data are interpreted in the framework of distributed processes that progress from global, large-scale coping mechanisms (e.g., changes in behavioral strategies) to local, small-scale ones (e.g., changes in intrinsic properties). Within this framework, the compensation of dynamic deficits improves over time as deeper modifications are engraved within the finer parts of the vestibular-related networks. Finally, we offer perspectives and working hypotheses to pave the way for future research aimed at understanding the modulation and plasticity of central vestibular neurons’ intrinsic properties.
Journal of Vestibular Research-equilibrium & Orientation | 2009
Kathleen E. Cullen; Lloyd B. Minor; Mathieu Beraneck; Soroush G. Sadeghi
The vestibulo-ocular reflex (VOR), which functions to stabilize gaze and ensure clear vision during everyday activities, shows impressive adaptation in response to environmental requirements. In particular, the VOR exhibits remarkable recovery following the loss of unilateral labyrinthine input as a result of injury or disease. The relative simplicity of the pathways that mediate the VOR, make it an excellent model system for understanding the changes (learning) that occur in the brain following peripheral vestibular loss to yield adaptive changes. This mini review considers the findings of behavioral, single unit recording and lesion studies of VOR compensation. Recent experiments have provided evidence that the brain makes use of multiple plasticity mechanisms (i.e., changes in peripheral as well as central processing) during the course of vestibular compensation to accomplish the sensory-motor transformations required to accurately guide behavior.
Annals of the New York Academy of Sciences | 2009
Hans Straka; François M. Lambert; Sandra Pfanzelt; Mathieu Beraneck
Self‐generated locomotor activity is accompanied by head movements that cause retinal image displacements with a resultant degradation of visual information processing. To maintain visual acuity, retinal image drift must be counteracted by dynamic compensatory gaze adjustments that derive to a large extent from vestibulo‐ocular reflexes (VOR). During head motion, vestibular signals code a wide frequency range from static head position to high acceleration profiles during rapid head turns. This large dynamic range suggests that the sensory–motor transformation occurs in parallel, yet complementary frequency‐tuned pathways. In fact, the classic “three‐neuronal” VOR pathway is composed of distinct functional subgroups of cells with different intrinsic properties and response dynamics at each synaptic level. This generates sets of neuronal filters that are ideal for particular frequency ranges and signaling patterns, respectively. In second‐order vestibular subgroups, different filter functions, and hence a different synaptic processing is facilitated by a coadaptation of intrinsic membrane and emerging network properties. The consecutive assembly and sequential connectivity of pre‐ and postsynaptic neuronal elements with corresponding physiological properties, generates parallel pathways that allow for separate coding of different dynamic head‐motion components during locomotor activity.
Experimental Brain Research | 2011
Daniel Eugène; Erwin Idoux; Mathieu Beraneck; Lee E. Moore; Pierre-Paul Vidal
Numerous studies in rodents have shown that the functional efficacy of several neurotransmitter receptors and the intrinsic membrane excitability of central vestibular neurons, as well as the organization of synaptic connections within and between vestibular nuclei can be modified during postnatal development, after a lesion of peripheral vestibular organs or in vestibular-deficient mutant animals. This review mainly focuses on the intrinsic membrane properties of neurons of the medial vestibular nuclei of rodents, their postnatal maturation, and changes following experimental or congenital alterations in vestibular inputs. It also presents the concomitant modifications in the distribution of these neurons into different neuron types, which has been based on their membrane properties in relation to their anatomical, biochemical, or functional properties. The main points discussed in this review are that (1) the intrinsic membrane properties can be used to distinguish between two dominant types of neurons, (2) the system remains plastic throughout the whole life of the animal, and finally, (3) the intracellular calcium concentration has a major effect on the intrinsic membrane properties of central vestibular neurons.
The Journal of Neuroscience | 2013
Raymond Romand; Wojciech Krezel; Mathieu Beraneck; Laura Cammas; Valérie Fraulob; Nadia Messaddeq; Pascal Kessler; Eri Hashino; Pascal Dollé
The retinaldehyde dehydrogenase 3 (Raldh3) gene encodes a major retinoic acid synthesizing enzyme and is highly expressed in the inner ear during embryogenesis. We found that mice deficient in Raldh3 bear severe impairment in vestibular functions. These mutant mice exhibited spontaneous circling/tilted behaviors and performed poorly in several vestibular–motor function tests. In addition, video-oculography revealed a complete loss of the maculo-ocular reflex and a significant reduction in the horizontal angular vestibulo-ocular reflex, indicating that detection of both linear acceleration and angular rotation were compromised in the mutants. Consistent with these behavioral and functional deficiencies, morphological anomalies, characterized by a smaller vestibular organ with thinner semicircular canals and a significant reduction in the number of otoconia in the saccule and the utricle, were consistently observed in the Raldh3 mutants. The loss of otoconia in the mutants may be attributed, at least in part, to significantly reduced expression of Otop1, which encodes a protein known to be involved in calcium regulation in the otolithic organs. Our data thus reveal a previously unrecognized role of Raldh3 in structural and functional development of the vestibular end organs.
PLOS ONE | 2013
Aline Chevallier; Antoine Mialot; Jean-Maurice Petit; Pedro M. Fernández-Salguero; Robert Barouki; Xavier Coumoul; Mathieu Beraneck
The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR−/−) leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR), were investigated. The OKR is less effective in the AhR−/− mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressedin the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR−/− mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR−/− mice might give insights into the developmental mechanisms which lead to congenital eye disorders.
PLOS ONE | 2012
Mathieu Beraneck; Mickael Bojados; Anne Le Séac’h; Marc Jamon; Pierre-Paul Vidal
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.
Journal of Vestibular Research-equilibrium & Orientation | 2011
Mathieu Beraneck; Hans Straka
Second-order vestibular neurons (2°VN) are the central element for the transformation of body motion-related sensory signals into extraocular motor commands for retinal image stabilization during locomotion. The wide range of motion dynamics necessitates sensory signal transformation in parallel, frequency-tuned channels. Accordingly, in various vertebrates, 2°VN have been shown to form differently tuned functional subgroups. In frog, these neurons subdivide into two separate populations with distinctly different intrinsic membrane properties, discharge dynamics and synaptic response characteristics. Frog tonic 2°VN exhibit low-pass filter characteristics and membrane properties that cause amplification of synaptic inputs, whereas phasic 2°VN form band-pass filters that allow frequency-dependent shunting of repetitive inputs. The differential, yet complementary membrane properties render tonic 2°VN particularly suitable for synaptic integration and phasic 2°VN for differentiation and event detection. Differential insertion of the two cell types into local circuits reinforces the functional consequences of the intrinsic membrane properties, respectively. As a consequence, the synergy of cellular and network properties creates sets of neuronal elements with particular filter characteristics that form flexible, frequency-tuned components for optimal transformation of all dynamic aspects of body motion-related multisensory signals.