Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathieu Blanchette is active.

Publication


Featured researches published by Mathieu Blanchette.


PLOS Biology | 2005

Variant Histone H2A.Z Is Globally Localized to the Promoters of Inactive Yeast Genes and Regulates Nucleosome Positioning

Benoit Guillemette; Alain R. Bataille; Nicolas Gévry; Maryse Adam; Mathieu Blanchette; François Robert; Luc Gaudreau

H2A.Z is an evolutionary conserved histone variant involved in transcriptional regulation, antisilencing, silencing, and genome stability. The mechanism(s) by which H2A.Z regulates these various biological functions remains poorly defined, in part due to the lack of knowledge regarding its physical location along chromosomes and the bearing it has in regulating chromatin structure. Here we mapped H2A.Z across the yeast genome at an approximately 300-bp resolution, using chromatin immunoprecipitation combined with tiling microarrays. We have identified 4,862 small regions—typically one or two nucleosomes wide—decorated with H2A.Z. Those “Z loci” are predominantly found within specific nucleosomes in the promoter of inactive genes all across the genome. Furthermore, we have shown that H2A.Z can regulate nucleosome positioning at the GAL1 promoter. Within HZAD domains, the regions where H2A.Z shows an antisilencing function, H2A.Z is localized in a wider pattern, suggesting that the variant histone regulates a silencing and transcriptional activation via different mechanisms. Our data suggest that the incorporation of H2A.Z into specific promoter-bound nucleosomes configures chromatin structure to poise genes for transcriptional activation. The relevance of these findings to higher eukaryotes is discussed.


Nature Genetics | 2013

The Capsella rubella genome and the genomic consequences of rapid mating system evolution

Tanja Slotte; Khaled M. Hazzouri; J. Arvid Ågren; Daniel Koenig; Florian Maumus; Ya-Long Guo; Kim A. Steige; Adrian E. Platts; Juan S. Escobar; L. Killian Newman; Wei Wang; Terezie Mandáková; Emilio Vello; Lisa M. Smith; Stefan R. Henz; Joshua G. Steffen; Shohei Takuno; Yaniv Brandvain; Graham Coop; Peter Andolfatto; Tina T. Hu; Mathieu Blanchette; Richard M. Clark; Hadi Quesneville; Magnus Nordborg; Brandon S. Gaut; Martin A. Lysak; Jerry Jenkins; Jane Grimwood; Jarrod Chapman

The shift from outcrossing to selfing is common in flowering plants, but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.


BMC Bioinformatics | 2004

PhyME: A probabilistic algorithm for finding motifs in sets of orthologous sequences

Saurabh Sinha; Mathieu Blanchette; Martin Tompa

BackgroundThis paper addresses the problem of discovering transcription factor binding sites in heterogeneous sequence data, which includes regulatory sequences of one or more genes, as well as their orthologs in other species.ResultsWe propose an algorithm that integrates two important aspects of a motifs significance – overrepresentation and cross-species conservation – into one probabilistic score. The algorithm allows the input orthologous sequences to be related by any user-specified phylogenetic tree. It is based on the Expectation-Maximization technique, and scales well with the number of species and the length of input sequences. We evaluate the algorithm on synthetic data, and also present results for data sets from yeast, fly, and human.ConclusionsThe results demonstrate that the new approach improves motif discovery by exploiting multiple species information.


Journal of Molecular Evolution | 1999

Gene Order Breakpoint Evidence in Animal Mitochondrial Phylogeny

Mathieu Blanchette; Takashi Kunisawa; David Sankoff

Abstract. Multiple genome rearrangement methodology facilitates the inference of animal phylogeny from gene orders on the mitochondrial genome. The breakpoint distance is preferable to other, highly correlated but computationally more difficult, genomic distances when applied to these data. A number of theories of metazoan evolution are compared to phylogenies reconstructed by ancestral genome optimization, using a minimal total breakpoints criterion. The notion of unambiguously reconstructed segments is introduced as a way of extracting the invariant aspects of multiple solutions for a given ancestral genome; this enables a detailed reconstruction of the evolution of non-tRNA mitochondrial gene order.


Nucleic Acids Research | 2003

FootPrinter: a program designed for phylogenetic footprinting

Mathieu Blanchette; Martin Tompa

Phylogenetic footprinting is a method for the discovery of regulatory elements in a set of homologous regulatory regions, usually collected from multiple species. It does so by identifying the best conserved motifs in those homologous regions. This note describes web software that has been designed specifically for this purpose, making use of the phylogenetic relationships among the homologous sequences in order to make more accurate predictions. The software is called FootPrinter and is available at http://bio.cs.washington.edu/software.html.


Nature Genetics | 2013

An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions

Annabelle Haudry; Adrian E. Platts; Emilio Vello; Douglas R. Hoen; Mickael Leclercq; Robert J. Williamson; Ewa Forczek; Zoé Joly-Lopez; Joshua G. Steffen; Khaled M. Hazzouri; Ken Dewar; John R. Stinchcombe; Daniel J. Schoen; Xiaowu Wang; Jeremy Schmutz; Christopher D. Town; Patrick P. Edger; J. Chris Pires; Karen S. Schumaker; David E. Jarvis; Terezie Mandáková; Martin A. Lysak; Erik van den Bergh; M. Eric Schranz; Paul M. Harrison; Alan M. Moses; Thomas E. Bureau; Stephen I. Wright; Mathieu Blanchette

Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species.


research in computational molecular biology | 2001

Algorithms for phylogenetic footprinting

Mathieu Blanchette

Phylogenetic footprinting is a technique that identifies regulatory elements by finding unusually well conserved regions in a set of orthologous non-coding DNA sequences from multiple species. In an earlier paper, we presented an exact algorithm that identifies the most conserved region of a set of sequences. Here, we present a number of algorithmic improvements that produce a 1000 fold speedup over the original algorithm. We also show how prior knowledge can be used to identify weaker motifs, and how to handle data sets in which only an unknown subset of the sequences contain the regulatory element. Each technique is implemented and successfully identifies a large number of known binding sites, as well as several highly conserved but uncharacterized regions.


PLOS ONE | 2012

Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment

Alexander Kawrykow; Gary Roumanis; Alfred Kam; Daniel Kwak; Clarence Leung; Chu Wu; Eleyine Zarour; Phylo players; Luis Sarmenta; Mathieu Blanchette; Jérôme Waldispühl

Background Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. Methodology/Principal Findings We introduce Phylo, a human-based computing framework applying “crowd sourcing” techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. Conclusions/Significance We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of “human-brain peta-flops” of computation that are spent every day playing games. Phylo is available at: http://phylo.cs.mcgill.ca.


Nucleic Acids Research | 2010

The three-dimensional architecture of Hox cluster silencing

Maria Ferraiuolo; Mathieu C. Rousseau; Carol M. Miyamoto; Solomon Shenker; Xue Qing David Wang; Michelle Nadler; Mathieu Blanchette; Josée Dostie

Spatial chromatin organization is emerging as an important mechanism to regulate the expression of genes. However, very little is known about genome architecture at high-resolution in vivo. Here, we mapped the three-dimensional organization of the human Hox clusters with chromosome conformation capture (3C) technology. We show that computational modeling of 3C data sets can identify candidate regulatory proteins of chromatin architecture and gene expression. Hox genes encode evolutionarily conserved master regulators of development which strict control has fascinated biologists for over 25 years. Proper transcriptional silencing is key to Hox function since premature expression can lead to developmental defects or human disease. We now show that the HoxA cluster is organized into multiple chromatin loops that are dependent on transcription activity. Long-range contacts were found in all four silent clusters but looping patterns were specific to each cluster. In contrast to the Drosophila homeotic bithorax complex (BX-C), we found that Polycomb proteins are only modestly required for human cluster looping and silencing. However, computational three-dimensional Hox cluster modeling identified the insulator-binding protein CTCF as a likely candidate mediating DNA loops in all clusters. Our data suggest that Hox cluster looping may represent an evolutionarily conserved structural mechanism of transcription regulation.


BMC Bioinformatics | 2011

Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling

Mathieu C. Rousseau; James S. Fraser; Maria Ferraiuolo; Josée Dostie; Mathieu Blanchette

BackgroundLong-range interactions between regulatory DNA elements such as enhancers, insulators and promoters play an important role in regulating transcription. As chromatin contacts have been found throughout the human genome and in different cell types, spatial transcriptional control is now viewed as a general mechanism of gene expression regulation. Chromosome Conformation Capture Carbon Copy (5C) and its variant Hi-C are techniques used to measure the interaction frequency (IF) between specific regions of the genome. Our goal is to use the IF data generated by these experiments to computationally model and analyze three-dimensional chromatin organization.ResultsWe formulate a probabilistic model linking 5C/Hi-C data to physical distances and describe a Markov chain Monte Carlo (MCMC) approach called MCMC5C to generate a representative sample from the posterior distribution over structures from IF data. Structures produced from parallel MCMC runs on the same dataset demonstrate that our MCMC method mixes quickly and is able to sample from the posterior distribution of structures and find subclasses of structures. Structural properties (base looping, condensation, and local density) were defined and their distribution measured across the ensembles of structures generated. We applied these methods to a biological model of human myelomonocyte cellular differentiation and identified distinct chromatin conformation signatures (CCSs) corresponding to each of the cellular states. We also demonstrate the ability of our method to run on Hi-C data and produce a model of human chromosome 14 at 1Mb resolution that is consistent with previously observed structural properties as measured by 3D-FISH.ConclusionsWe believe that tools like MCMC5C are essential for the reliable analysis of data from the 3C-derived techniques such as 5C and Hi-C. By integrating complex, high-dimensional and noisy datasets into an easy to interpret ensemble of three-dimensional conformations, MCMC5C allows researchers to reliably interpret the result of their assay and contrast conformations under different conditions.Availabilityhttp://Dostielab.biochem.mcgill.ca

Collaboration


Dive into the Mathieu Blanchette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdoulaye Baniré Diallo

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Tompa

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir Makarenkov

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Diane Forget

École Polytechnique de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge