Mathieu Bourgarel
Centre de coopération internationale en recherche agronomique pour le développement
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathieu Bourgarel.
PLOS Pathogens | 2013
Jan Felix Drexler; Victor Max Corman; Marcel A. Müller; Alexander N. Lukashev; Anatoly P. Gmyl; Bruno Coutard; Alexander C. Adam; Daniel Ritz; Lonneke M. Leijten; Debby van Riel; René Kallies; Stefan M. Klose; Florian Gloza-Rausch; Tabea Binger; Augustina Annan; Yaw Adu-Sarkodie; Samuel Oppong; Mathieu Bourgarel; Daniel Rupp; Bernd Hoffmann; Mathias Schlegel; Beate M. Kümmerer; Detlev H. Krüger; Jonas Schmidt-Chanasit; Alvaro Aguilar Setién; Veronika M. Cottontail; Thiravat Hemachudha; Supaporn Wacharapluesadee; Klaus Osterrieder; Ralf Bartenschlager
Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.
The Journal of Infectious Diseases | 2011
Gaël D. Maganga; Mathieu Bourgarel; Ghislain Ebang Ella; Jan Felix Drexler; Jean-Paul Gonzalez; Christian Drosten; Eric M. Leroy
Marburg virus (MARV) nucleic acid was detected in Rousettus aegyptiacus bats in 2005 and 2006 in the midwest and southeast of Gabon. In this study we used MARV-specific real-time reverse-transcription polymerase chain reaction (RT-PCR) and MARV-specific nested RT-PCR assay to screen 1257 bats caught during July 2009, December 2009, and June 2010 in 3 caves situated in northern Gabon. Nine specimens tested positive by the real-time assay, with cycle threshold values ranging from 35 to 39, of which only 1 R. aegyptiacus specimen collected in 2009 was positive in the nested VP35 RT-PCR assay. Together with MARV-positive bats in the south and west found in 2005 and 2006, confirmation of phylogenetically closely related MARV-positive bats 5 years later and in northern Gabon suggests that MARV is now enzootic in Gabon and emphasizes the importance of long-term monitoring of bat populations and human-bat interfaces.
PLOS ONE | 2014
Gaël D. Maganga; Mathieu Bourgarel; Peter Vallo; Thierno D. Dallo; Carine Ngoagouni; Jan Felix Drexler; Christian Drosten; Emmanuel Nakouné; Eric M. Leroy; Serge Morand
The rising incidence of emerging infectious diseases (EID) is mostly linked to biodiversity loss, changes in habitat use and increasing habitat fragmentation. Bats are linked to a growing number of EID but few studies have explored the factors of viral richness in bats. These may have implications for role of bats as potential reservoirs. We investigated the determinants of viral richness in 15 species of African bats (8 Pteropodidae and 7 microchiroptera) in Central and West Africa for which we provide new information on virus infection and bat phylogeny. We performed the first comparative analysis testing the correlation of the fragmented geographical distribution (defined as the perimeter to area ratio) with viral richness in bats. Because of their potential effect, sampling effort, host body weight, ecological and behavioural traits such as roosting behaviour, migration and geographical range, were included into the analysis as variables. The results showed that the geographical distribution size, shape and host body weight have significant effects on viral richness in bats. Viral richness was higher in large-bodied bats which had larger and more fragmented distribution areas. Accumulation of viruses may be related to the historical expansion and contraction of bat species distribution range, with potentially strong effects of distribution edges on virus transmission. Two potential explanations may explain these results. A positive distribution edge effect on the abundance or distribution of some bat species could have facilitated host switches. Alternatively, parasitism could play a direct role in shaping the distribution range of hosts through host local extinction by virulent parasites. This study highlights the importance of considering the fragmentation of bat species geographical distribution in order to understand their role in the circulation of viruses in Africa.
Infection, Genetics and Evolution | 2012
Linda Duval; Cyndie Mejean; Gael D. Maganga; Boris Makanga; Lilian B. Mangama Koumba; Michael A. Peirce; Frédéric Ariey; Mathieu Bourgarel
This paper attempts to expand on the current knowledge regarding the evolutionary history of bat haemosporidian parasites. Using modern molecular tools as adjuncts to existing morphological descriptions, our understanding of the diversity of these parasites is discussed. The biogeography and host range distribution together with possible host-parasite interactions remain to be evaluated in more detail. Using a nested-PCR cytochrome b mitochondrial gene approach, we established a screening programme and survey of several months duration for haemosporidian parasites in four central African bat species living in an ecological community. The aim of the study was to describe parasites morphologically and molecularly, together with parasite prevalence variations over time, and evaluate parasite host-specificity in these sympatric cave bats. Over the survey period, Polychromophilus melanipherus was the only haemosporidian parasite identified in Miniopterus inflatus, with a continuous molecular prevalence of at least 60%. Molecular phylogenetic analyses show that P. melanipherus is a monophyletic group infecting Miniopterus bats which is, a sister group to P. murinus and Polychromophilus spp. This monophyletic group is composed of different cyt b haplotypes molecularly distantly related (but morphologically similar), circulating without geographic or host species distinction. This suggests that P. melanipherus is a species complex restricted to the family Miniopteridae. The phylogenetic analysis confirms that Polychromophilus parasites are distributed worldwide and supports the view that they are more closely related to avian haemosporidian parasites.
PLOS ONE | 2014
Gael D. Maganga; Mathieu Bourgarel; Judicaël Obame Nkoghe; Nadine N'Dilimabaka; Christian Drosten; Christophe Paupy; Serge Morand; Jan Felix Drexler; Eric M. Leroy
Bats are known to harbor multiple paramyxoviruses. Despite the creation of two new genera, Aquaparamyxovirus and Ferlavirus, to accommodate this increasing diversity, several recently isolated or characterized viruses remain unclassified beyond the subfamily level. In the present study, among 985 bats belonging to 6 species sampled in the Belinga caves of Gabon, RNA of an unclassified paramyxovirus (Belinga bat virus, BelPV) was discovered in 14 African sheath-tailed bats (Coleura afra), one of which exhibited several hemorrhagic lesions at necropsy, and viral sequence was obtained in two animals. Phylogenetically, BelPV is related to J virus and Beilong virus (BeiPV), two other unclassified paramyxoviruses isolated from rodents. In the diseased BelPV-infected C. afra individual, high viral load was detected in the heart, and the lesions were consistent with those reported in wild rodents and mice experimentally infected by J virus. BelPV was not detected in other tested bat species sharing the same roosting sites and living in very close proximity with C. afra in the two caves sampled, suggesting that this virus may be host-specific for C. afra. The mode of transmission of this paramyxovirus in bat populations remains to be discovered.
Emerging Health Threats Journal | 2010
Mathieu Bourgarel; Nadia Wauquier; Jean-Paul Gonzalez
Emerging infectious diseases (EID) are currently the major threat to public health worldwide and most EID events have involved zoonotic infectious agents. Central Africa in general and Gabon in particular are privileged areas for the emergence of zoonotic EIDs. Indeed, human incursions in Gabonese forests for exploitation purposes lead to intensified contacts between humans and wildlife thus generating an increased risk of emergence of zoonotic diseases. In Gabon, 51 endemic or potential endemic viral infectious diseases have been reported. Among them, 22 are of zoonotic origin and involve 12 families of viruses. The most notorious are dengue, yellow fever, ebola, marburg, Rift Valley fever and chikungunya viruses. Potential EID due to wildlife in Gabon are thereby plentiful and need to be inventoried. The Gabonese Public Health system covers geographically most of the country allowing a good access to sanitary information and efficient monitoring of emerging diseases. However, access to treatment and prevention is better in urban areas where medical structures are more developed and financial means are concentrated even though the population is equally distributed between urban and rural areas. In spite of this, Gabon could be a good field for investigating the emergence or re-emergence of zoonotic EID. Indeed Gabonese health research structures such as CIRMF, advantageously located, offer high quality researchers and facilities that study pathogens and wildlife ecology, aiming toward a better understanding of the contact and transmission mechanisms of new pathogens from wildlife to human, the emergence of zoonotic EID and the breaking of species barriers by pathogens.
Scientific Reports | 2017
Judicaël Obame-Nkoghe; Nil Rahola; Diego Ayala; Patrick Yangari; Davy Jiolle; Xavier Allene; Mathieu Bourgarel; Gael D. Maganga; Nicolas Berthet; Eric-Maurice Leroy; Christophe Paupy
Caves house pathogenic microorganisms, some of which are transmitted by blood-sucking arthropods. In Africa, previous studies identified mosquitoes, sand flies and biting midges as the main potential vectors of cave-dwelling pathogens. However, to understand their involvement in pathogen spillover, it is crucial to characterize their diversity, community composition and dynamics. Using CDC light traps, we collected hematophagous Diptera in six caves of Gabon during one-shot or longitudinal sampling, and investigated their species diversity and dynamics in relation with external rainfall. Overall, we identified 68 species of mosquitoes, sand flies and biting midges, including 45 new records for Gabon. The dominant species were: Uranotaenia nigromaculata, Anopheles smithii s.l., Culex. rima group and Culex quasiguiarti for mosquitoes, Spelaeophlebotomus gigas and Spelaeomyia emilii for sand flies and the Culicoides trifasciellus group and Culicoides fulvithorax for biting midges. The survey revealed that species assemblages were cave-specific and included mainly troglophilous and trogloxenous species. Both diversity and abundance varied according to the cave and sampling time, and were significantly associated with rainfall. These associations were modulated by the cave specific environmental conditions. Moreover, the presence of trogloxenous and troglophilous species could be of high significance for pathogen transfers between cave and epigeous hosts, including humans.
Biodiversity and Conservation | 2006
Nicolas Gaidet-Drapier; Hervé Fritz; Mathieu Bourgarel; Pierre Cyril Renaud; Pierre Poilecot; Philippe Chardonnet; Craig Coid; Denys Poulet; Sébastien Le Bel
Animal Conservation | 2008
Marion Valeix; Hervé Fritz; Simon Chamaillé-Jammes; Mathieu Bourgarel; Felix Murindagomo
African Journal of Ecology | 2009
Simon Chamaillé-Jammes; Marion Valeix; Mathieu Bourgarel; Felix Murindagomo; Hervé Fritz
Collaboration
Dive into the Mathieu Bourgarel's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputs