Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathieu Erhardt is active.

Publication


Featured researches published by Mathieu Erhardt.


Nature Cell Biology | 2009

Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity

Derrick Gibbings; Constance Ciaudo; Mathieu Erhardt; Olivier Voinnet

In animals, P-bodies or GW-bodies appear to cause the congregation of proteins involved in microRNA (miRNA)-mediated post-transcriptional silencing. The localization of P-bodies does not overlap with that of known organelles and are thus considered independent of lipid bilayers. Nonetheless, an miRNA effector protein, argonaute 2 (AGO2), was initially identified as membrane-associated, and some miRNAs have been found in secreted vesicles (exosomes) that derive from endo-lysosomal compartments called multivesicular bodies (MVBs). Proteins can be sorted in a ubiquitin-dependent manner into MVBs by three heteromeric subcomplexes, collectively termed ESCRT (endosomal sorting complex required for transport), to be further secreted in exosomes and/or degraded by the lysosome. Here we show that GW-bodies containing GW182 and AGO2, two main components of the RNA-induced silencing complex (RISC), are distinct from P-bodies due to their congregation with endosomes and MVBs. Moreover, miRNAs and miRNA-repressible mRNAs are enriched at these cellular membranes, suggesting that endosomes and/or MVBs are sites of miRNA-loaded RISC (miRISC) accumulation and, possibly, action. We further show that purified exosome-like vesicles secreted by MVBs are considerably enriched in GW182, but not P-body components, AGO2 or miRNA-repressible mRNA. Moreover, cells depleted of some ESCRT components show compromised miRNA-mediated gene silencing and over-accumulate GW182, which associates with ubiquitylated proteins. Therefore, GW182, possibly in association with a fraction of miRNA-loaded AGO2, is sorted into MVBs for secretion and/or lysosomal degradation. We propose that this process promotes continuous assembly or disassembly of membrane-associated miRISCs, which is possibly required for miRNA loading or target recognition and subsequent silencing.


Plant Physiology | 2005

A coumaroyl-ester-3-hydroxylase Insertion Mutant Reveals the Existence of Nonredundant meta -Hydroxylation Pathways and Essential Roles for Phenolic Precursors in Cell Expansion and Plant Growth

Nawroz Abdulrazzak; Brigitte Pollet; Jiirgen Ehlting; Kim Larsen; Carole Asnaghi; Sebastien Ronseau; Caroline Proux; Mathieu Erhardt; Virginie Seltzer; Jean-Pierre Renou; Pascaline Ullmann; Markus Pauly; Catherine Lapierre; Danièle Werck-Reichhart

Cytochromes P450 monooxygenases from the CYP98 family catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. The ref8 Arabidopsis (Arabidopsis thaliana) mutant, with a point mutation in the CYP98A3 gene, was previously described to show developmental defects, changes in lignin composition, and lack of soluble sinapoyl esters. We isolated a T-DNA insertion mutant in CYP98A3 and show that this mutation leads to a more drastic inhibition of plant development and inhibition of cell growth. Similar to the ref8 mutant, the insertion mutant has reduced lignin content, with stem lignin essentially made of p-hydroxyphenyl units and trace amounts of guaiacyl and syringyl units. However, its roots display an ectopic lignification and a substantial proportion of guaiacyl and syringyl units, suggesting the occurrence of an alternative CYP98A3-independent meta-hydroxylation mechanism active mainly in the roots. Relative to the control, mutant plantlets produce very low amounts of sinapoyl esters, but accumulate flavonol glycosides. Reduced cell growth seems correlated with alterations in the abundance of cell wall polysaccharides, in particular decrease in crystalline cellulose, and profound modifications in gene expression and homeostasis reminiscent of a stress response. CYP98A3 thus constitutes a critical bottleneck in the phenylpropanoid pathway and in the synthesis of compounds controlling plant development. CYP98A3 cosuppressed lines show a gradation of developmental defects and changes in lignin content (40% reduction) and structure (prominent frequency of p-hydroxyphenyl units), but content in foliar sinapoyl esters is similar to the control. The purple coloration of their leaves is correlated to the accumulation of sinapoylated anthocyanins.


The Plant Cell | 2004

Expression of a Nondegradable Cyclin B1 Affects Plant Development and Leads to Endomitosis by Inhibiting the Formation of a Phragmoplast

Magdalena Weingartner; Marie Claire Criqui; Tamás Mészáros; Pavla Binarová; Anne Catherine Schmit; Anne Helfer; Aude Derevier; Mathieu Erhardt; László Bögre; Pascal Genschik

In plants after the disassembly of mitotic spindle, a specific cytokinetic structure called the phragmoplast is built, and after cytokinesis, microtubules populate the cell cortex in an organized orientation that determines cell elongation and shape. Here, we show that impaired cyclin B1 degradation, resulting from a mutation within its destruction box, leads to an isodiametric shape of epidermal cells in leaves, stems, and roots and retarded growth of seedlings. Microtubules in these misshaped cells are grossly disorganized, focused around the nucleus, whereas they were entirely missing or abnormally organized along the cell cortex. A high percentage of cells expressing nondestructible cyclin B1 had doubled DNA content as a result of undergoing endomitosis. During anaphase the cytokinesis-specific syntaxin KNOLLE could still localize to the midplane of cell division, whereas NPK1-activating kinesin-like protein 1, a cytokinetic kinesin-related protein, was unable to do so, and instead of the formation of a phragmoplast, the midzone microtubules persisted between the separated nuclei, which eventually fused. In summary, our results show that the timely degradation of mitotic cyclins in plants is required for the reorganization of mitotic microtubules to the phragmoplast and for proper cytokinesis. Subsequently, the presence of nondegradable cyclin B1 leads to a failure in organizing properly the cortical microtubules that determine cell elongation and shape.


The Plant Cell | 2011

DELLAs Regulate Chlorophyll and Carotenoid Biosynthesis to Prevent Photooxidative Damage during Seedling Deetiolation in Arabidopsis

Soizic Cheminant; Florence Bouvier; Sandra Pelletier; Jean-Pierre Renou; Mathieu Erhardt; Scott Hayes; Matthew J. Terry; Pascal Genschik; Patrick Achard

This work shows that gibberellin-regulated DELLA proteins regulate chlorophyll and carotenoid biosynthesis to stimulate cotyledon greening during deetiolation. In plants, light represents an important environmental signal that triggers the production of photosynthetically active chloroplasts. This developmental switch is critical for plant survival because chlorophyll precursors that accumulate in darkness can be extremely destructive when illuminated. Thus, plants have evolved mechanisms to adaptively control plastid development during the transition into light. Here, we report that the gibberellin (GA)-regulated DELLA proteins play a crucial role in the formation of functional chloroplasts during deetiolation. We show that Arabidopsis thaliana DELLAs accumulating in etiolated cotyledons derepress chlorophyll and carotenoid biosynthetic pathways in the dark by repressing the transcriptional activity of the phytochrome-interacting factor proteins. Accordingly, dark-grown GA-deficient ga1-3 mutants (that accumulate DELLAs) display a similar gene expression pattern to wild-type seedlings grown in the light. Consistent with this, ga1-3 seedlings accumulate higher amounts of protochlorophyllide (a phototoxic chlorophyll precursor) in darkness but, surprisingly, are substantially more resistant to photooxidative damage following transfer into light. This is due to the DELLA-dependent upregulation of the photoprotective enzyme protochlorophyllide oxidoreductase (POR) in the dark. Our results emphasize the role of DELLAs in regulating the levels of POR, protochlorophyllide, and carotenoids in the dark and in protecting etiolated seedlings against photooxidative damage during initial light exposure.


The Plant Cell | 2006

The Plant-Specific ssDNA Binding Protein OSB1 Is Involved in the Stoichiometric Transmission of Mitochondrial DNA in Arabidopsis

Vincent Zaegel; Benoît Guermann; Monique Le Ret; Charles Andrés; Denise Meyer; Mathieu Erhardt; Jean Canaday; José M. Gualberto; Patrice Imbault

Plant mitochondrial genomes exist in a natural state of heteroplasmy, in which substoichiometric levels of alternative mitochondrial DNA (mtDNA) molecules coexist with the main genome. These subgenomes either replicate autonomously or are created by infrequent recombination events. We found that Arabidopsis thaliana OSB1 (for Organellar Single-stranded DNA Binding protein1) is required for correct stoichiometric mtDNA transmission. OSB1 is part of a family of plant-specific DNA binding proteins that are characterized by a novel motif that is required for single-stranded DNA binding. The OSB1 protein is targeted to mitochondria, and promoter–β-glucuronidase fusion showed that the gene is expressed in budding lateral roots, mature pollen, and the embryo sac of unfertilized ovules. OSB1 T-DNA insertion mutants accumulate mtDNA homologous recombination products and develop phenotypes of leaf variegation and distortion. The mtDNA rearrangements occur in two steps: first, homozygous mutants accumulate subgenomic levels of homologous recombination products; second, in subsequent generations, one of the recombination products becomes predominant. After the second step, the process is no longer reversible by backcrossing. Thus, OSB1 participates in controlling the stoichiometry of alternative mtDNA forms generated by recombination. This regulation could take place in gametophytic tissues to ensure the transmission of a functional mitochondrial genome.


Nucleic Acids Research | 2005

RNR1, a 3′–5′ exoribonuclease belonging to the RNR superfamily, catalyzes 3′ maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana

Thomas J. Bollenbach; Heike Lange; Ryan Gutierrez; Mathieu Erhardt; David B. Stern; Dominique Gagliardi

Arabidopsis thaliana chloroplasts contain at least two 3′ to 5′ exoribonucleases, polynucleotide phosphorylase (PNPase) and an RNase R homolog (RNR1). PNPase has been implicated in both mRNA and 23S rRNA 3′ processing. However, the observed maturation defects do not affect chloroplast translation, suggesting that the overall role of PNPase in maturation of chloroplast rRNA is not essential. Here, we show that this role can be largely ascribed to RNR1, for which homozygous mutants germinate only on sucrose-containing media, and have white cotyledons and pale green rosette leaves. Accumulation of chloroplast-encoded mRNAs and tRNAs is unaffected in such mutants, suggesting that RNR1 activity is either unnecessary or redundant for their processing and turnover. However, accumulation of several chloroplast rRNA species is severely affected. High-resolution RNA gel blot analysis, and mapping of 5′ and 3′ ends, revealed that RNR1 is involved in the maturation of 23S, 16S and 5S rRNAs. The 3′ extensions of the accumulating 5S rRNA precursors can be efficiently removed in vitro by purified RNR1, consistent with this view. Our data suggest that decreased accumulation of mature chloroplast ribosomal RNAs leads to a reduction in the number of translating ribosomes, ultimately compromising chloroplast protein abundance and thus plant growth and development.


PLOS Genetics | 2010

Structure, Function, and Evolution of the Thiomonas spp. Genome

Florence Arsène-Ploetze; Sandrine Koechler; Marie Marchal; Jean-Yves Coppée; Michael Chandler; Violaine Bonnefoy; Céline Brochier-Armanet; Mohamed Barakat; Valérie Barbe; Fabienne Battaglia-Brunet; Odile Bruneel; Christopher G. Bryan; Jessica Cleiss-Arnold; Stéphane Cruveiller; Mathieu Erhardt; Audrey Heinrich-Salmeron; Florence Hommais; Catherine Joulian; Evelyne Krin; Aurélie Lieutaud; Didier Lièvremont; Caroline Michel; Daniel Muller; Philippe Ortet; Caroline Proux; Patricia Siguier; David Roche; Zoé Rouy; Grégory Salvignol; Djamila Slyemi

Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.


Molecular Plant-microbe Interactions | 2000

P42 movement protein of Beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies associated with plasmodesmata

Mathieu Erhardt; M. Morant; Christophe Ritzenthaler; C. Stussi-Garaud; H. Guilley; K. Richards; G. Jonard; Salah Bouzoubaa; David Gilmer

Cell-to-cell movement of Beet necrotic yellow vein virus (BNYVV) is driven by a set of three movement proteins--P42, P13, and P15--organized into a triple gene block (TGB) on viral RNA 2. The first TGB protein, P42, has been fused to the green fluorescent protein (GFP) and fusion proteins between P42 and GFP were expressed from a BNYVV RNA 3-based replicon during virus infection. GFP-P42, in which the GFP was fused to the P42 N terminus, could drive viral cell-to-cell movement when the copy of the P42 gene on RNA 2 was disabled but the C-terminal fusion P42-GFP could not. Confocal microscopy of epidermal cells of Chenopodium quinoa near the leading edge of the infection revealed that GFP-P42 localized to punctate bodies apposed to the cell wall whereas free GFP, expressed from the replicon, was distributed uniformly throughout the cytoplasm. The punctate bodies sometimes appeared to traverse the cell wall or to form pairs of disconnected bodies on each side. The punctate bodies co-localized with callose, indicating that they are associated with plasmodesmata-rich regions such as pit fields. Point mutations in P42 that inhibited its ability to drive cell-to-cell movement also inhibited GFP-P42 punctate body formation. GFP-P42 punctate body formation was dependent on expression of P13 and P15 during the infection, indicating that these proteins act together or sequentially to localize P42 to the plasmodesmata.


Plant Physiology | 2013

Sporopollenin Biosynthetic Enzymes Interact and Constitute a Metabolon Localized to the Endoplasmic Reticulum of Tapetum Cells

Benjamin Lallemand; Mathieu Erhardt; Thierry Heitz; Michel Legrand

Enzymes involved in the biosynthesis of sporopollenin, the main constituent of pollen exine, likely form a metabolon in the endoplasmic reticulum of the anther tapetal cells. The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thaliana). Here all these sporopollenin biosynthetic enzymes but TKPR2 have been immunolocalized to endoplasmic reticulum of anther tapetal cells. Pull-down experiments demonstrated that tagged recombinant proteins interacted to form complexes whose constituents were characterized by immunoblotting. In vivo protein interactions were evidenced by yeast (Saccharomyces cerevisiae) two-hybrid analysis and by fluorescence lifetime imaging microscopy/Förster resonance energy transfer studies in transgenic Nicotiana benthamiana, which were used to test the possibility that the enzymes interact to form a biosynthetic metabolon. Various pairs of proteins fused to two distinct fluorochromes were coexpressed in N. benthamiana leaf tissues and fluorescence lifetime imaging microscopy/Förster resonance energy transfer measurements demonstrated that proteins interacted pairwise in planta. Taken together, these results suggest the existence of a sporopollenin metabolon.


Plant Molecular Biology | 2012

Voltage-dependent-anion-channels (VDACs) in Arabidopsis have a dual localization in the cell but show a distinct role in mitochondria

Nadia Robert; Isabelle d’Erfurth; Anne Marmagne; Mathieu Erhardt; Michèle Allot; Karine Boivin; Lionel Gissot; Dario Monachello; Morgane Michaud; Anne-Marie Duchêne; Hélène Barbier-Brygoo; Laurence Maréchal-Drouard; Geneviève Ephritikhine; Sophie Filleur

In mammals, the Voltage-dependent anion channels (VDACs) are predominant proteins of the outer mitochondrial membrane (OMM) where they contribute to the exchange of small metabolites essential for respiration. They were shown to be as well associated with the plasma membrane (PM) and act as redox enzyme or are involved in ATP release for example. In Arabidopsis, we show that four out of six genomic sequences encode AtVDAC proteins. All four AtVDACs are ubiquitously expressed in the plant but each of them displays a specific expression pattern in root cell types. Using two complementary approaches, we demonstrate conclusively that the four expressed AtVDACs are targeted to both mitochondria and plasma membrane but in differential abundance, AtVDAC3 being the most abundant in PM, and conversely, AtVDAC4 almost exclusively associated with mitochondria. These are the first plant proteins to be shown to reside in both these two membranes. To investigate a putative function of AtVDACs, we analyzed T-DNA insertion lines in each of the corresponding genes. Knock-out mutants for AtVDAC1, AtVDAC2 and AtVDAC4 present slow growth, reduced fertility and yellow spots in leaves when atvdac3 does not show any visible difference compared to wild-type plants. Analyses of atvdac1 and atvdac4 reveal that yellow areas correspond to necrosis and the mitochondria are swollen in these two mutants. All these results suggest that, in spite of a localization in plasma membrane for three of them, AtVDAC1, AtVDAC2 and AtVDAC4 have a main function in mitochondria.

Collaboration


Dive into the Mathieu Erhardt's collaboration.

Top Co-Authors

Avatar

David Gilmer

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

G. Jonard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

H. Guilley

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

K. Richards

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anne-Catherine Schmit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Etienne Herzog

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Canaday

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Mutterer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Elodie Klein

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Jean-Luc Evrard

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge