Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathieu Ferron is active.

Publication


Featured researches published by Mathieu Ferron.


Cell | 2007

Endocrine Regulation of Energy Metabolism by the Skeleton

Na Kyung Lee; Hideaki Sowa; Eiichi Hinoi; Mathieu Ferron; Jong Deok Ahn; Cyrille Confavreux; Romain Dacquin; Patrick J. Mee; Marc D. McKee; Dae Young Jung; Zhiyou Zhang; Jason K. Kim; Franck Mauvais-Jarvis; Patricia Ducy; Gerard Karsenty

The regulation of bone remodeling by an adipocyte-derived hormone implies that bone may exert a feedback control of energy homeostasis. To test this hypothesis we looked for genes expressed in osteoblasts, encoding signaling molecules and affecting energy metabolism. We show here that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and are protected from obesity and glucose intolerance because of an increase in beta-cell proliferation, insulin secretion, and insulin sensitivity. In contrast, mice lacking the osteoblast-secreted molecule osteocalcin display decreased beta-cell proliferation, glucose intolerance, and insulin resistance. Removing one Osteocalcin allele from OST-PTP-deficient mice corrects their metabolic phenotype. Ex vivo, osteocalcin can stimulate CyclinD1 and Insulin expression in beta-cells and Adiponectin, an insulin-sensitizing adipokine, in adipocytes; in vivo osteocalcin can improve glucose tolerance. By revealing that the skeleton exerts an endocrine regulation of sugar homeostasis this study expands the biological importance of this organ and our understanding of energy metabolism.


Cell | 2010

Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism

Mathieu Ferron; Jianwen Wei; Tatsuya Yoshizawa; Andrea Del Fattore; Ronald A. DePinho; Anna Teti; Patricia Ducy; Gerard Karsenty

The broad expression of the insulin receptor suggests that the spectrum of insulin function has not been fully described. A cell type expressing this receptor is the osteoblast, a bone-specific cell favoring glucose metabolism through a hormone, osteocalcin, that becomes active once uncarboxylated. We show here that insulin signaling in osteoblasts is necessary for whole-body glucose homeostasis because it increases osteocalcin activity. To achieve this function insulin signaling in osteoblasts takes advantage of the regulation of osteoclastic bone resorption exerted by osteoblasts. Indeed, since bone resorption occurs at a pH acidic enough to decarboxylate proteins, osteoclasts determine the carboxylation status and function of osteocalcin. Accordingly, increasing or decreasing insulin signaling in osteoblasts promotes or hampers glucose metabolism in a bone resorption-dependent manner in mice and humans. Hence, in a feed-forward loop, insulin signals in osteoblasts activate a hormone, osteocalcin, that promotes glucose metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice

Mathieu Ferron; Eiichi Hinoi; Gerard Karsenty; Patricia Ducy

The osteoblast-specific secreted molecule osteocalcin behaves as a hormone regulating glucose metabolism and fat mass in two mutant mouse strains. Here, we ask two questions: is the action of osteocalcin on β cells and adipocytes elicited by the same concentrations of the molecule, and more importantly, does osteocalcin regulate energy metabolism in WT mice? Cell-based assays using isolated pancreatic islets, a β cell line, and primary adipocytes showed that picomolar amounts of osteocalcin are sufficient to regulate the expression of the insulin genes and β cell proliferation markers, whereas nanomolar amounts affect adiponectin and Pgc1α expression in white and brown adipocytes, respectively. In vivo the same difference exists in osteocalcins ability to regulate glucose metabolism on the one hand and affect insulin sensitivity and fat mass on the other hand. Furthermore, we show that long-term treatment of WT mice with osteocalcin can significantly weaken the deleterious effect on body mass and glucose metabolism of gold thioglucose-induced hyperphagia and high-fat diet. These results establish in WT mice the importance of this novel molecular player in the regulation of glucose metabolism and fat mass and suggest that osteocalcin may be of value in the treatment of metabolic diseases.


The EMBO Journal | 2012

A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB

Carmine Settembre; Roberto Zoncu; Diego L. Medina; Francesco Vetrini; Serkan Erdin; SerpilUckac Erdin; Tuong Huynh; Mathieu Ferron; Gerard Karsenty; Michel Claude Vellard; Valeria Facchinetti; David M. Sabatini; Andrea Ballabio

The lysosome plays a key role in cellular homeostasis by controlling both cellular clearance and energy production to respond to environmental cues. However, the mechanisms mediating lysosomal adaptation are largely unknown. Here, we show that the Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis, colocalizes with master growth regulator mTOR complex 1 (mTORC1) on the lysosomal membrane. When nutrients are present, phosphorylation of TFEB by mTORC1 inhibits TFEB activity. Conversely, pharmacological inhibition of mTORC1, as well as starvation and lysosomal disruption, activates TFEB by promoting its nuclear translocation. In addition, the transcriptional response of lysosomal and autophagic genes to either lysosomal dysfunction or pharmacological inhibition of mTORC1 is suppressed in TFEB−/− cells. Interestingly, the Rag GTPase complex, which senses lysosomal amino acids and activates mTORC1, is both necessary and sufficient to regulate starvation‐ and stress‐induced nuclear translocation of TFEB. These data indicate that the lysosome senses its content and regulates its own biogenesis by a lysosome‐to‐nucleus signalling mechanism that involves TFEB and mTOR.


Cell | 2011

Endocrine Regulation of Male Fertility by the Skeleton

Franck Oury; Grzegorz Sumara; Olga Sumara; Mathieu Ferron; Haixin Chang; Charles E. Smith; Louis Hermo; Susan S. Suarez; Bryan L. Roth; Patricia Ducy; Gerard Karsenty

Interactions between bone and the reproductive system have until now been thought to be limited to the regulation of bone remodeling by the gonads. We now show that, in males, bone acts as a regulator of fertility. Using coculture assays, we demonstrate that osteoblasts are able to induce testosterone production by the testes, though they fail to influence estrogen production by the ovaries. Analyses of cell-specific loss- and gain-of-function models reveal that the osteoblast-derived hormone osteocalcin performs this endocrine function. By binding to a G protein-coupled receptor expressed in the Leydig cells of the testes, osteocalcin regulates in a CREB-dependent manner the expression of enzymes that is required for testosterone synthesis, promoting germ cell survival. This study expands the physiological repertoire of osteocalcin and provides the first evidence that the skeleton is an endocrine regulator of reproduction.


Nature | 2012

The contribution of bone to whole-organism physiology

Gerard Karsenty; Mathieu Ferron

The mouse genetic revolution has shown repeatedly that most organs have more functions than expected. This has led to the realization that, in addition to a molecular and cellular approach, there is a need for a whole-organism study of physiology. The skeleton is an example of how a whole-organism approach to physiology can broaden the functions of a given organ, reveal connections of this organ with others such as the brain, pancreas and gut, and shed new light on the pathogenesis of degenerative diseases affecting multiple organs.


Bone | 2012

INTERMITTENT INJECTIONS OF OSTEOCALCIN IMPROVE GLUCOSE METABOLISM AND PREVENT TYPE 2 DIABETES IN MICE

Mathieu Ferron; Marc D. McKee; Robert L. Levine; Patricia Ducy; Gerard Karsenty

The uncarboxylated form of the osteoblast-specific secreted molecule osteocalcin is a hormone favoring glucose handling and increasing energy expenditure. As a result, the absence of osteocalcin leads to glucose intolerance in mice, while genetically modified mice with an increase in uncarboxylated osteocalcin are protected from type 2 diabetes and obesity. Here, we tested in the mouse the therapeutic potential of intermittent administration of osteocalcin. We found that daily injections of osteocalcin at either 3 or 30 ng/g/day significantly improved glucose tolerance and insulin sensitivity in mice fed a normal diet. This was attributable, in part, to an increase in both β-cell mass and insulin secretion. When mice were fed a high-fat diet (HFD), daily injections of osteocalcin partially restored insulin sensitivity and glucose tolerance. Moreover, mice treated with intermittent osteocalcin injections displayed additional mitochondria in their skeletal muscle, had increased energy expenditure and were protected from diet-induced obesity. Finally, the hepatic steatosis induced by the HFD was completely rescued in mice receiving osteocalcin daily. Overall, these results provide evidence that daily injections of osteocalcin can improve glucose handling and prevent the development of type 2 diabetes.


Journal of Clinical Investigation | 2009

The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts

Tatsuya Yoshizawa; Eiichi Hinoi; Dae Young Jung; Daisuke Kajimura; Mathieu Ferron; Jin Seo; Jonathan M. Graff; Jason K. Kim; Gerard Karsenty

The recent demonstration that osteoblasts have a role in controlling energy metabolism suggests that they express cell-specific regulatory genes involved in this process. Activating transcription factor 4 (ATF4) is a transcription factor that accumulates predominantly in osteoblasts, where it regulates virtually all functions linked to the maintenance of bone mass. Since Atf4-/- mice have smaller fat pads than littermate controls, we investigated whether ATF4 also influences energy metabolism. Here, we have shown, through analysis of Atf4-/- mice, that ATF4 inhibits insulin secretion and decreases insulin sensitivity in liver, fat, and muscle. Several lines of evidence indicated that this function of ATF4 occurred through its osteoblastic expression. First, insulin sensitivity is enhanced in the liver of Atf4-/- mice, but not in cultured hepatocytes from these mice. Second, mice overexpressing ATF4 in osteoblasts only [termed here alpha1(I)Collagen-Atf4 mice] displayed a decrease in insulin secretion and were insulin insensitive. Third, the alpha1(I)Collagen-Atf4 transgene corrected the energy metabolism phenotype of Atf4-/- mice. Fourth, and more definitely, mice lacking ATF4 only in osteoblasts presented the same metabolic abnormalities as Atf4-/- mice. Molecularly, ATF4 favored expression in osteoblasts of Esp, which encodes a product that decreases the bioactivity of osteocalcin, an osteoblast-specific secreted molecule that enhances secretion of and sensitivity to insulin. These results provide a transcriptional basis to the observation that osteoblasts fulfill endocrine functions and identify ATF4 as a regulator of most functions of osteoblasts.


Journal of Clinical Investigation | 2013

Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis

Franck Oury; Mathieu Ferron; Wang Huizhen; Cyrille Confavreux; Lin Xu; Julie Lacombe; Prashanth Srinivas; Alexandre Chamouni; Francesca Lugani; Hervé Lejeune; T. Rajendra Kumar; Ingrid Plotton; Gerard Karsenty

The osteoblast-derived hormone osteocalcin promotes testosterone biosynthesis in the mouse testis by binding to GPRC6A in Leydig cells. Interestingly, Osteocalcin-deficient mice exhibit increased levels of luteinizing hormone (LH), a pituitary hormone that regulates sex steroid synthesis in the testes. These observations raise the question of whether LH regulates osteocalcins reproductive effects. Additionally, there is growing evidence that osteocalcin levels are a reliable marker of insulin secretion and sensitivity and circulating levels of testosterone in humans, but the endocrine function of osteocalcin is unclear. Using mouse models, we found that osteocalcin and LH act in 2 parallel pathways and that osteocalcin-stimulated testosterone synthesis is positively regulated by bone resorption and insulin signaling in osteoblasts. To determine the importance of osteocalcin in humans, we analyzed a cohort of patients with primary testicular failure and identified 2 individuals harboring the same heterozygous missense variant in one of the transmembrane domains of GPRC6A, which prevented the receptor from localizing to the cell membrane. This study uncovers the existence of a second endocrine axis that is necessary for optimal male fertility in the mouse and suggests that osteocalcin modulates reproductive function in humans.


Cell Metabolism | 2013

Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO1

Daisuke Kajimura; Ha Won Lee; Kyle J. Riley; Emilio Arteaga-Solis; Mathieu Ferron; Bin Zhou; Christopher J. Clarke; Yusuf A. Hannun; Ronald A. DePinho; X. Edward Guo; J. John Mann; Gerard Karsenty

The synthesis of adiponectin, an adipokine with ill-defined functions in animals fed a normal diet, is enhanced by the osteoblast-derived hormone osteocalcin. Here we show that adiponectin signals back in osteoblasts to hamper their proliferation and favor their apoptosis, altogether decreasing bone mass and circulating osteocalcin levels. Adiponectin fulfills these functions, independently of its known receptors and signaling pathways, by decreasing FoxO1 activity in a PI3-kinase-dependent manner. Over time, however, these local effects are masked because adiponectin signals in neurons of the locus coeruleus, also through FoxO1, to decrease the sympathetic tone, thereby increasing bone mass and decreasing energy expenditure. This study reveals that adiponectin has the unusual ability to regulate the same function in two opposite manners depending on where it acts and that it opposes, partially, leptins influence on the sympathetic nervous system. It also proposes that adiponectin regulation of bone mass occurs through a PI3-kinase-FoxO1 pathway.

Collaboration


Dive into the Mathieu Ferron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Lacombe

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Farquharson

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Carmen Huesa

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge