Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathieu Groussin is active.

Publication


Featured researches published by Mathieu Groussin.


Molecular Biology and Evolution | 2013

Bio++: efficient extensible libraries and tools for computational molecular evolution

Laurent Guéguen; Sylvain Gaillard; Bastien Boussau; Manolo Gouy; Mathieu Groussin; Nicolas C. Rochette; Thomas Bigot; David Fournier; Fanny Pouyet; Vincent Cahais; Aurélien Bernard; Celine Scornavacca; Benoit Nabholz; Annabelle Haudry; Loïc Dachary; Nicolas Galtier; Khalid Belkhir; Julien Y. Dutheil

Efficient algorithms and programs for the analysis of the ever-growing amount of biological sequence data are strongly needed in the genomics era. The pace at which new data and methodologies are generated calls for the use of pre-existing, optimized-yet extensible-code, typically distributed as libraries or packages. This motivated the Bio++ project, aiming at developing a set of C++ libraries for sequence analysis, phylogenetics, population genetics, and molecular evolution. The main attractiveness of Bio++ is the extensibility and reusability of its components through its object-oriented design, without compromising the computer-efficiency of the underlying methods. We present here the second major release of the libraries, which provides an extended set of classes and methods. These extensions notably provide built-in access to sequence databases and new data structures for handling and manipulating sequences from the omics era, such as multiple genome alignments and sequencing reads libraries. More complex models of sequence evolution, such as mixture models and generic n-tuples alphabets, are also included.


Molecular Biology and Evolution | 2011

Adaptation to Environmental Temperature Is a Major Determinant of Molecular Evolutionary Rates in Archaea

Mathieu Groussin; Manolo Gouy

Methods to infer the ancestral conditions of life are commonly based on geological and paleontological analyses. Recently, several studies used genome sequences to gain information about past ecological conditions taking advantage of the property that the G+C and amino acid contents of bacterial and archaeal ribosomal DNA genes and proteins, respectively, are strongly influenced by the environmental temperature. The adaptation to optimal growth temperature (OGT) since the Last Universal Common Ancestor (LUCA) over the universal tree of life was examined, and it was concluded that LUCA was likely to have been a mesophilic organism and that a parallel adaptation to high temperature occurred independently along the two lineages leading to the ancestors of Bacteria on one side and of Archaea and Eukarya on the other side. Here, we focus on Archaea to gain a precise view of the adaptation to OGT over time in this domain. It has been often proposed on the basis of indirect evidence that the last archaeal common ancestor was a hyperthermophilic organism. Moreover, many results showed the influence of environmental temperature on the evolutionary dynamics of archaeal genomes: Thermophilic organisms generally display lower evolutionary rates than mesophiles. However, to our knowledge, no study tried to explain the differences of evolutionary rates for the entire archaeal domain and to investigate the evolution of substitution rates over time. A comprehensive archaeal phylogeny and a non homogeneous model of the molecular evolutionary process allowed us to estimate ancestral base and amino acid compositions and OGTs at each internal node of the archaeal phylogenetic tree. The last archaeal common ancestor is predicted to have been hyperthermophilic and adaptations to cooler environments can be observed for extant mesophilic species. Furthermore, mesophilic species present both long branches and high variation of nucleotide and amino acid compositions since the last archaeal common ancestor. The increase of substitution rates observed in mesophilic lineages along all their branches can be interpreted as an ongoing adaptation to colder temperatures and to new metabolisms. We conclude that environmental temperature is a major factor that governs evolutionary rates in Archaea.


Nature Communications | 2017

Unraveling the processes shaping mammalian gut microbiomes over evolutionary time

Mathieu Groussin; Florent Mazel; Jon G. Sanders; Chris S. Smillie; Sébastien Lavergne; Wilfried Thuiller; Eric J. Alm

Whether mammal–microbiome interactions are persistent and specific over evolutionary time is controversial. Here we show that host phylogeny and major dietary shifts have affected the distribution of different gut bacterial lineages and did so on vastly different bacterial phylogenetic resolutions. Diet mostly influences the acquisition of ancient and large microbial lineages. Conversely, correlation with host phylogeny is mostly seen among more recently diverged bacterial lineages, consistent with processes operating at similar timescales to host evolution. Considering microbiomes at appropriate phylogenetic scales allows us to model their evolution along the mammalian tree and to infer ancient diets from the predicted microbiomes of mammalian ancestors. Phylogenetic analyses support co-speciation as having a significant role in the evolution of mammalian gut microbiome compositions. Highly co-speciating bacterial genera are also associated with immune diseases in humans, laying a path for future studies that probe these co-speciating bacteria for signs of co-evolution.


Systematic Biology | 2013

A branch-heterogeneous model of protein evolution for efficient inference of ancestral sequences.

Mathieu Groussin; Bastien Boussau; Manolo Gouy

Most models of nucleotide or amino acid substitution used in phylogenetic studies assume that the evolutionary process has been homogeneous across lineages and that composition of nucleotides or amino acids has remained the same throughout the tree. These oversimplified assumptions are refuted by the observation that compositional variability characterizes extant biological sequences. Branch-heterogeneous models of protein evolution that account for compositional variability have been developed, but are not yet in common use because of the large number of parameters required, leading to high computational costs and potential overparameterization. Here, we present a new branch-nonhomogeneous and nonstationary model of protein evolution that captures more accurately the high complexity of sequence evolution. This model, henceforth called Correspondence and likelihood analysis (COaLA), makes use of a correspondence analysis to reduce the number of parameters to be optimized through maximum likelihood, focusing on most of the compositional variation observed in the data. The model was thoroughly tested on both simulated and biological data sets to show its high performance in terms of data fitting and CPU time. COaLA efficiently estimates ancestral amino acid frequencies and sequences, making it relevant for studies aiming at reconstructing and resurrecting ancestral amino acid sequences. Finally, we applied COaLA on a concatenate of universal amino acid sequences to confirm previous results obtained with a nonhomogeneous Bayesian model regarding the early pattern of adaptation to optimal growth temperature, supporting the mesophilic nature of the Last Universal Common Ancestor. [Ancestral sequence reconstruction; nonhomogeneous model; optimal growth temperature; phylogenomics; phylogeny.]


Molecular Biology and Evolution | 2015

Toward More Accurate Ancestral Protein Genotype–Phenotype Reconstructions with the Use of Species Tree-Aware Gene Trees

Mathieu Groussin; Joanne K. Hobbs; Gergely J. Szöllősi; Simonetta Gribaldo; Vickery L. Arcus; Manolo Gouy

The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype–phenotype space in which proteins diversify.


Molecular Phylogenetics and Evolution | 2011

Bayesian relaxed clock estimation of divergence times in foraminifera.

Mathieu Groussin; Jan Pawlowski; Ziheng Yang

Accurate and precise estimation of divergence times during the Neo-Proterozoic is necessary to understand the speciation dynamic of early Eukaryotes. However such deep divergences are difficult to date, as the molecular clock is seriously violated. Recent improvements in Bayesian molecular dating techniques allow the relaxation of the molecular clock hypothesis as well as incorporation of multiple and flexible fossil calibrations. Divergence times can then be estimated even when the evolutionary rate varies among lineages and even when the fossil calibrations involve substantial uncertainties. In this paper, we used a Bayesian method to estimate divergence times in Foraminifera, a group of unicellular eukaryotes, known for their excellent fossil record but also for the high evolutionary rates of their genomes. Based on multigene data we reconstructed the phylogeny of Foraminifera and dated their origin and the major radiation events. Our estimates suggest that Foraminifera emerged during the Cryogenian (650-920 Ma, Neo-Proterozoic), with a mean time around 770 Ma, about 220 Myr before the first appearance of reliable foraminiferal fossils in sediments (545 Ma). Most dates are in agreement with the fossil record, but in general our results suggest earlier origins of foraminiferal orders. We found that the posterior time estimates were robust to specifications of the prior. Our results highlight inter-species variations of evolutionary rates in Foraminifera. Their effect was partially overcome by using the partitioned Bayesian analysis to accommodate rate heterogeneity among data partitions and using the relaxed molecular clock to account for changing evolutionary rates. However, more coding genes appear necessary to obtain more precise estimates of divergence times and to resolve the conflicts between fossil and molecular date estimates.


Molecular Biology and Evolution | 2016

Gene Acquisitions from Bacteria at the Origins of Major Archaeal Clades Are Vastly Overestimated

Mathieu Groussin; Bastien Boussau; Gergely J. Szollosi; Laura Eme; Manolo Gouy; Céline Brochier-Armanet; Vincent Daubin

In a recent article, Nelson-Sathi et al. (NS) report that the origins of major archaeal lineages (MAL) correspond to massive group-specific gene acquisitions via HGT from bacteria (Nelson-Sathi et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517(7532):77-80.). If correct, this would have fundamental implications for the process of diversification in microbes. However, a reexamination of these data and results shows that the methodology used by NS systematically inflates the number of genes acquired at the root of each MAL, and incorrectly assumes bacterial origins for these genes. A reanalysis of their data with appropriate phylogenetic models accounting for the dynamics of gene gain and loss between lineages supports the continuous acquisition of genes over long periods in the evolution of Archaea.


Biology Letters | 2013

The molecular signal for the adaptation to cold temperature during early life on Earth

Mathieu Groussin; Bastien Boussau; Sandrine Charles; Samuel Blanquart; Manolo Gouy

Several lines of evidence such as the basal location of thermophilic lineages in large-scale phylogenetic trees and the ancestral sequence reconstruction of single enzymes or large protein concatenations support the conclusion that the ancestors of the bacterial and archaeal domains were thermophilic organisms which were adapted to hot environments during the early stages of the Earth. A parsimonious reasoning would therefore suggest that the last universal common ancestor (LUCA) was also thermophilic. Various authors have used branch-wise non-homogeneous evolutionary models that better capture the variation of molecular compositions among lineages to accurately reconstruct the ancestral G + C contents of ribosomal RNAs and the ancestral amino acid composition of highly conserved proteins. They confirmed the thermophilic nature of the ancestors of Bacteria and Archaea but concluded that LUCA, their last common ancestor, was a mesophilic organism having a moderate optimal growth temperature. In this letter, we investigate the unknown nature of the phylogenetic signal that informs ancestral sequence reconstruction to support this non-parsimonious scenario. We find that rate variation across sites of molecular sequences provides information at different time scales by recording the oldest adaptation to temperature in slow-evolving regions and subsequent adaptations in fast-evolving ones.


bioRxiv | 2017

Adaptive evolution within the gut microbiome of individual people

Shijie Zhao; Tami D. Lieberman; Mathilde Poyet; Mathieu Groussin; Sean M. Gibbons; Ramnik J. Xavier; Eric J. Alm

Individual bacterial lineages stably persist for years in the human gut microbiome1–3. However, it is unknown if these lineages adapt during colonization of healthy people2. Here, we assess evolution within individual microbiomes by sequencing the genomes of 602 Bacteroides fragilis isolates cultured from 12 healthy subjects. We find that B. fragilis within-subject populations contain significant de novo nucleotide and mobile element diversity, which preserve years of within-person evolutionary history. This evolutionary history contains signatures of within-person adaptation to both subject-specific and common selective forces, including parallel mutations in seventeen genes. These seventeen genes are involved in cell-envelope biosynthesis and polysaccharide utilization, as well as yet under-characterized pathways. Notably, one of these genes has been shown to be critical for B. fragilis colonization in mice4, indicating that key genes have not already been optimized for survival in vivo. This surprising lack of optimization, given historical signatures of purifying selection in these genes, suggests that varying selective forces with discordant solutions act upon B. fragilis in vivo. Remarkably, in one subject, two B.fragilis sublineages coexisted at a stable relative frequency over a 1.5-year period despite rapid adaptive dynamics within one of the sublineages. This stable coexistence suggests that competing selective forces can lead to B. fragilis niche-differentiation even within a single person. We conclude that B. fragilis adapts rapidly within the microbiomes of individual healthy people, with implications for microbiome stability and manipulation.


bioRxiv | 2015

Origins of major archaeal clades do not correspond to gene acquisitions from bacteria

Mathieu Groussin; Bastien Boussau; Gergely J. Szöllősi; Laura Eme; Manolo Gouy; Céline Brochier-Armanet; Vincent Daubin

In a recent articxle, Nelson-Sathi et al. [NS] report that the origins of Major Archaeal Lineages [MAL] correspond to massive group-specific gene acquisitions via horizontal gene transfer (HGT) from bacteria (Nelson-Sathi et al., 2015, Nature 517(7532):77-80). If correct, this would have fundamental implications for the process of diversification in microbes. However, a re-examination of these data and results shows that the methodology used by NS systematically inflates the number of genes acquired at the root of each MAL, and incorrectly assumes bacterial origins for these genes. A re-analysis of their data with appropriate phylogenetic models accounting for the dynamics of gene gain and loss between lineages supports the continuous acquisition of genes over long periods in the evolution of Archaea.

Collaboration


Dive into the Mathieu Groussin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florent Mazel

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge