Mathieu Paoletti
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathieu Paoletti.
Molecular Microbiology | 2003
Bérangère Pinan-Lucarré; Mathieu Paoletti; Karine Dementhon; Bénédicte Coulary-Salin; Corinne Clavé
In filamentous fungi, a cell death reaction occurs when cells of unlike genotype fuse. This cell death reaction, known as incompatibility reaction, is genetically controlled by a set of loci termed het loci (for heterokaryon incompatibility loci). In Podospora anserina, genes induced during this cell death reaction (idi genes) have been identified. The idi‐6/pspA gene encodes a serine protease that is the orthologue of the vacuolar protease B of Saccharomyces cerevisiae involved in autophagy. We report here that the PSPA protease participates in the degradative autophagic pathway in Podospora. We have identified the Podospora orthologue of the AUT7 gene of S. cerevisiae involved in the early steps of autophagy in yeast. This gene is induced during the development of the incompatibility reaction and was designated idi‐7. We have used a GFP–IDI7 fusion protein as a cytological marker of the induction of autophagy. Relocalization of this fusion protein and detection of autophagic bodies inside the vacuoles during the development of the incompatibility reaction provide cytological evidence of induction of autophagy during this cell death reaction. Therefore, cell death by incompatibility in fungi appears to be related to type II programmed cell death in metazoans. In addition, we found that pspA and idi‐7 null mutations confer differentiation defects such as the absence of female reproductive structures, indicating that autophagy is required for differentiation in Podospora.
BioEssays | 2009
Mathieu Paoletti; Sven J. Saupe
In fungi, cell fusion between genetically unlike individuals triggers a cell death reaction known as the incompatibility reaction. In Podospora anserina, the genes controlling this process belong to a gene family encoding STAND proteins with an N‐terminal cell death effector domain, a central NACHT domain and a C‐terminal WD‐repeat domain. These incompatibility genes are extremely polymorphic, subject to positive Darwinian selection and display a remarkable genetic plasticity allowing for constant diversification of the WD‐repeat domain responsible for recognition of non‐self. Remarkably, the architecture of these proteins is related to pathogen‐recognition receptors ensuring innate immunity in plants and animals. Here, we hypothesize that these P. anserina incompatibility genes could be components of a yet‐unidentified innate immune system of fungi. As already proposed in the case of plant hybrid necrosis or graft rejection in mammals, incompatibility could be a by‐product of pathogen‐driven divergence in host defense genes.
Eukaryotic Cell | 2003
Karine Dementhon; Mathieu Paoletti; Bérangère Pinan-Lucarré; Nathalie Loubradou-Bourges; Martine Sabourin; Sven J. Saupe; Corinne Clavé
ABSTRACT In filamentous fungi, a programmed cell death (PCD) reaction occurs when cells of unlike genotype fuse. This reaction is caused by genetic differences at specific loci termed het loci (for heterokaryon incompatibility). Although several het genes have been characterized, the mechanism of this cell death reaction and its relation to PCD in higher eukaryotes remains largely unknown. In Podospora anserina, genes induced during the cell death reaction triggered by the het-R het-V interaction have been identified and termed idi genes. Herein, we describe the functional characterization of one idi gene (idi-1) and explore the connection between incompatibility and the response to nutrient starvation. We show that IDI-1 is a cell wall protein which localizes at the septum during normal growth. We found that induction of idi-1 and of the other known idi genes is not specific of the incompatibility reaction. The idi genes are induced upon nitrogen and carbon starvation and by rapamycin, a specific inhibitor of the TOR kinase pathway. The cytological hallmarks of het-R het-V incompatibility (increased septation, vacuolization, coalescence of lipid droplets, induction of autophagy, and cell death) are also observed during rapamycin treatment. Globally the cytological alterations and modifications in gene expression occurring during the incompatibility reaction are similar to those observed during starvation or rapamycin treatment.
PLOS ONE | 2012
Asen Daskalov; Mathieu Paoletti; Frédérique Ness; Sven J. Saupe
Background Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when interacting with HET-S, an allelic variant of HET-s. When templated by [Het-s], HET-S undergoes a trans-conformation, relocates to the cell membrane and induces toxicity. Methodology/Principal Findings Here, comparing HET-s homologs from different species, we devise a consensus for the HET-s elementary triangular motif. We use this motif to screen genomic databases and find a match to the N-terminus of NWD2, a STAND protein, encoded by the gene immediately adjacent to het-S. STAND proteins are signal transducing ATPases which undergo ligand-induced oligomerisation. Homology modelling predicts that the NWD2 N-terminal region adopts a HET-s-like fold. We propose that upon NWD2 oligomerisation, these N-terminal extensions adopt the β-solenoid fold and template HET-S to adopt the amyloid fold and trigger toxicity. We extend this model to a putative prion, the σ infectious element in Nectria haematococca, because the s locus controlling propagation of σ also encodes a STAND protein and displays analogous features. Comparative genomic analyses indicate evolutionary conservation of these STAND/prion-like gene pairs, identify a number of novel prion candidates and define, in addition to the HET-s PFD motif, two distinct, novel putative PFD-like motifs. Conclusions/Significance We suggest the existence, in the fungal kingdom, of a widespread and evolutionarily conserved mode of signal transduction based on the transmission of an amyloid-fold from a NOD-like STAND receptor protein to an effector protein.
Molecular Biology and Evolution | 2014
Eric Bastiaans; Alfons J. M. Debets; Duur K. Aanen; Anne D. van Diepeningen; Sven J. Saupe; Mathieu Paoletti
In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina. The het-c locus determines an allogenic incompatibility reaction together with two unlinked loci termed het-d and het-e. Each het-c allele is incompatible with a specific subset of the het-d and het-e alleles. We analyzed variability at the het-c locus in a population of 110 individuals, and in additional isolates from various localities. We identified a total of 11 het-c alleles, which define 7 distinct incompatibility specificity classes in combination with the known het-d and het-e alleles. We found that the het-c allorecognition gene of P. anserina is under diversifying selection. We find a highly unequal allele distribution of het-c in the population, which contrasts with the more balanced distribution of functional groups of het-c based on their allorecognition function. One explanation for the observed het-c diversity in the population is its function in allorecognition. However, alleles that are most efficient in allorecognition are rare. An alternative and not exclusive explanation for the observed diversity is that het-c is involved in pathogen recognition. In Arabidopsis thaliana, a homolog of het-c is a pathogen effector target, supporting this hypothesis. We hypothesize that the het-c diversity in P. anserina results from both its functions in pathogen-defense, and allorecognition.
Genome Biology | 2008
Mathieu Paoletti; Sven J. Saupe
The completed genome sequence of the coprophilous fungus Podospora anserina increases the sampling of fungal genomes. In line with its habitat of herbivore dung, this ascomycete has an exceptionally rich gene set devoted to the catabolism of complex carbohydrates.
Fems Microbiology Reviews | 2018
Aurélie Deveau; Gregory Bonito; Jessie K. Uehling; Mathieu Paoletti; Matthias Becker; Saskia Bindschedler; Stéphane Hacquard; Vincent Hervé; Jessy Labbé; Olga A. Lastovetsky; Sophie Mieszkin; Larry Millet; Balázs Vajna; Pilar Junier; Paola Bonfante; Bastiaan P Krom; Stefan Olsson; Jan Dirk van Elsas; Lukas Y. Wick
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
PLOS Pathogens | 2017
Jessie K. Uehling; Aurélie Deveau; Mathieu Paoletti
Survival and evolutionary success of living organisms directly depend on the ability to respond appropriately to their biotic environments. Plants and animals have developed intricate mechanisms of recognition and response that require differentiation between self and potentially pathogenic nonself and containment of infected tissues [1]. A class of cytosolic Nucleotide Oligomerization Domain (NOD)-like receptors, or NLRs, contribute to this recognition and discrimination process in plants and animals [2,3]. Less is known about how fungi monitor their interactions with their biotic environments. Here, we summarize evidence indicating that fungi have similar NLR proteins and may use similar mechanisms to recognize and respond to heterospecific nonself; we outline similarities and differences with their plant and animal counterparts, and we propose future directions elucidating aspects of fungal immune systems.
Seminars in Cancer Biology | 2007
Bérangère Pinan-Lucarré; Mathieu Paoletti; Corinne Clavé
Fungal Biology Reviews | 2016
Mathieu Paoletti