Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathieu Picardeau is active.

Publication


Featured researches published by Mathieu Picardeau.


Nature Reviews Microbiology | 2009

Leptospira: The Dawn of the Molecular Genetics Era for an Emerging Zoonotic Pathogen

Albert I. Ko; Cyrille Goarant; Mathieu Picardeau

Leptospirosis is a zoonotic disease that has emerged as an important cause of morbidity and mortality among impoverished populations. One hundred years after the discovery of the causative spirochaetal agent, little is understood about Leptospira spp. pathogenesis, which in turn has hampered the development of new intervention strategies to address this neglected disease. However, the recent availability of complete genome sequences for Leptospira spp. and the discovery of genetic tools for their transformation have led to important insights into the biology of these pathogens and their pathogenesis. We discuss the life cycle of the bacterium, the recent advances in our understanding and the implications for the future prevention of leptospirosis.


PLOS ONE | 2008

Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis

Mathieu Picardeau; Dieter M. Bulach; Christiane Bouchier; Richard L. Zuerner; Nora Zidane; Peter Wilson; Sophie Creno; Elizabeth Kuczek; Simona Bommezzadri; John Davis; Annette McGrath; Matthew Johnson; Caroline Boursaux-Eude; Torsten Seemann; Zoé Rouy; Ross L. Coppel; Julian I. Rood; Aurélie Lajus; John K. Davies; Claudine Médigue; Ben Adler

Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a third 74-kb replicon. Comparative sequence analysis provides evidence that L. biflexa is an excellent model for the study of Leptospira evolution; we conclude that 2052 genes (61%) represent a progenitor genome that existed before divergence of pathogenic and saprophytic Leptospira species. Comparisons of the L. biflexa genome with two pathogenic Leptospira species reveal several major findings. Nearly one-third of the L. biflexa genes are absent in pathogenic Leptospira. We suggest that once incorporated into the L. biflexa genome, laterally transferred DNA undergoes minimal rearrangement due to physical restrictions imposed by high gene density and limited presence of transposable elements. In contrast, the genomes of pathogenic Leptospira species undergo frequent rearrangements, often involving recombination between insertion sequences. Identification of genes common to the two pathogenic species, L. borgpetersenii and L. interrogans, but absent in L. biflexa, is consistent with a role for these genes in pathogenesis. Differences in environmental sensing capacities of L. biflexa, L. borgpetersenii, and L. interrogans suggest a model which postulates that loss of signal transduction functions in L. borgpetersenii has impaired its survival outside a mammalian host, whereas L. interrogans has retained environmental sensory functions that facilitate disease transmission through water.


PLOS Pathogens | 2007

The OmpA-Like Protein Loa22 Is Essential for Leptospiral Virulence

Paula Ristow; Pascale Bourhy; Flávia Weykamp da Cruz McBride; Cláudio Pereira Figueira; Michel Huerre; Patrick Ave; Isabelle Saint Girons; Albert I. Ko; Mathieu Picardeau

Pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetic manipulations of pathogenic species. In this study, we characterized a mutant obtained by insertion of the transposon Himar1 into a gene encoding a putative lipoprotein, Loa22, which has a predicted OmpA domain based on sequence identity. The resulting mutant did not express Loa22 and was attenuated in virulence in the guinea pig and hamster models of leptospirosis, whereas the genetically complemented strain was restored in Loa22 expression and virulence. Our results show that Loa22 was expressed during host infection and exposed on the cell surface. Loa22 is therefore necessary for virulence of L. interrogans in the animal model and represents, to our knowledge, the first genetically defined virulence factor in Leptospira species.


Molecular Microbiology | 2001

First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non‐motile mutants deficient in endoflagella

Mathieu Picardeau; Audrey Brenot; Isabelle Saint Girons

Leptospira spp. offer many advantages as model bacteria for the study of spirochaetes. However, homologous recombination between introduced DNA and the corresponding chromosomal loci has never been demonstrated. A unique feature of spirochaetes is the presence of endoflagella between the outer membrane sheath and the cell cylinder. We chose the flaB flagellin gene, constituting the flagellar core, as a target for gene inactivation in the saprophyte Leptospira biflexa. The amino acid sequence of the FlaB protein of L. biflexa was most similar to those of spirochaetes Brachyspira hyodysenteriae (agent of swine dysentery), Leptospira interrogans (agent of leptospirosis) and Treponema pallidum (agent of syphilis). A suicide vector containing the L. biflexa flaB gene disrupted by a kanamycin marker was UV irradiated or alkali denatured before electroporation. This methodology allowed the selection of many kanamycin‐resistant colonies resulting from single and double cross‐over events at the flaB locus. The double recombinant mutants are non‐motile, as visualized in both liquid and semi‐solid media. In addition, a flaB mutant selected for further analysis was shown to be deficient in endoflagella by electron microscopy. However, most of the transformants had resulted from a single homologous recombination event, giving rise to the integration of the suicide vector. We evaluated the effect of the sacB and rpsL genes in L. biflexa as potential counterselectable markers for allelic exchange, and then used the rpsL system for the positive selection of flaB double recombinants in a streptomycin‐resistant strain. Like the flaB mutant studied above, the Strr double cross‐over mutant was non‐motile and deficient in endoflagella. Our results demonstrate that FlaB is involved in flagella assembly and motility. They also show the feasibility of performing allelic replacement in Leptospira spp. by homologous recombination.


Journal of Clinical Microbiology | 2006

Application of Multilocus Variable-Number Tandem-Repeat Analysis for Molecular Typing of the Agent of Leptospirosis

Laurence Salaün; Fabrice Merien; Svetlana Gurianova; Guy Baranton; Mathieu Picardeau

ABSTRACT Leptospirosis is a worldwide-distributed zoonosis, endemic in tropical areas. Epidemiologic investigations of leptospirosis still rely on tedious serological identification tests. Recently, molecular typing systems based on variable-number tandem-repeat (VNTR) analysis have been described and have been used to identify Leptospira interrogans strains. Although L. interrogans is the most common Leptospira species encountered in human infections around the world, other pathogenic species, such as Leptospira kirschneri and Leptospira borgpetersenii, are also frequently associated with human leptospirosis. In this study, we aimed to extend multilocus VNTR analysis (MLVA) identification of strains to species other than L. interrogans. We designed primers for VNTR loci found in L. interrogans, L. kirschneri, and L. borgpetersenii. The discriminatory power of the redefined primers was evaluated on collection strains and then on clinical strains. We also carried out a retrospective study on 156 strains isolated from patients and animals from New Caledonia, an area of high endemicity in the South Pacific. Our results show that this simple PCR-based MLVA typing technique is a powerful methodology for the epidemiology of leptospirosis.


Molecular Microbiology | 1999

Physical mapping of an origin of bidirectional replication at the centre of the Borrelia burgdorferi linear chromosome

Mathieu Picardeau; Jean R. Lobry; B. Joseph Hinnebusch

The Borrelia burgdorferi chromosome is linear, with telomeres characterized by terminal inverted repeats and covalently closed single‐stranded hairpin loops. The replication mechanism of these unusual molecules is unknown. Previous analyses of bacterial chromosomes for which the complete sequence has been determined, including that of B. burgdorferi, revealed an abrupt switch in polarity of CG skew at known or putative origins of replication. We used nascent DNA strand analysis to physically map the B. burgdorferi origin to within a 2 kb region at the centre of the linear chromosome, and to show that replication proceeds bidirectionally from this origin. The results are consistent with replication models in which termination occurs at the telomeres after bidirectional, symmetrical elongation from the central origin. Sequences typical of origins of other bacterial chromosomes were not found at the origin of this spirochete. The most likely location of the replication origin of the linear chromosome is the 240 bp sequence between dnaA and dnaN where the switch in CG skew occurs.


Infection and Immunity | 2009

Genome-wide transposon mutagenesis in pathogenic Leptospira species.

Gerald L. Murray; Viviane Morel; Gustavo M. Cerqueira; Julio Henrique Rosa Croda; Amporn Srikram; Rebekah Henry; Albert I. Ko; Odir A. Dellagostin; Dieter M. Bulach; Rasana W. Sermswan; Ben Adler; Mathieu Picardeau

ABSTRACT Leptospira interrogans is the most common cause of leptospirosis in humans and animals. Genetic analysis of L. interrogans has been severely hindered by a lack of tools for genetic manipulation. Recently we developed the mariner-based transposon Himar1 to generate the first defined mutants in L. interrogans. In this study, a total of 929 independent transposon mutants were obtained and the location of insertion determined. Of these mutants, 721 were located in the protein coding regions of 551 different genes. While sequence analysis of transposon insertion sites indicated that transposition occurred in an essentially random fashion in the genome, 25 unique transposon mutants were found to exhibit insertions into genes encoding 16S or 23S rRNAs, suggesting these genes are insertional hot spots in the L. interrogans genome. In contrast, loci containing notionally essential genes involved in lipopolysaccharide and heme biosynthesis showed few transposon insertions. The effect of gene disruption on the virulence of a selected set of defined mutants was investigated using the hamster model of leptospirosis. Two attenuated mutants with disruptions in hypothetical genes were identified, thus validating the use of transposon mutagenesis for the identification of novel virulence factors in L. interrogans. This library provides a valuable resource for the study of gene function in L. interrogans. Combined with the genome sequences of L. interrogans, this provides an opportunity to investigate genes that contribute to pathogenesis and will provide a better understanding of the biology of L. interrogans.


Journal of Bacteriology | 2005

Random Insertional Mutagenesis of Leptospira interrogans, the Agent of Leptospirosis, Using a mariner Transposon

Pascale Bourhy; Hélène Louvel; Isabelle Saint Girons; Mathieu Picardeau

The recent availability of the complete genome sequences of Leptospira interrogans, the agent of leptospirosis, has allowed the identification of several putative virulence factors. However, to our knowledge, attempts to carry out gene transfer in pathogenic Leptospira spp. have failed so far. In this study, we show that the Himar1 mariner transposon permits random mutagenesis in the pathogen L. interrogans. We have identified genes that have been interrupted by Himar1 insertion in 35 L. interrogans mutants. This approach of transposon mutagenesis will be useful for understanding the spirochetal physiology and the pathogenic mechanisms of Leptospira, which remain largely unknown.


Journal of Bacteriology | 2001

Genomic Sequence and Transcriptional Analysis of a 23-Kilobase Mycobacterial Linear Plasmid: Evidence for Horizontal Transfer and Identification of Plasmid Maintenance Systems

Corinne Le Dantec; Nathalie Winter; Brigitte Gicquel; Véronique Vincent; Mathieu Picardeau

Linear plasmids were unknown in mycobacteria until recently. Here, we report the complete nucleotide sequence of 23-kb linear plasmid pCLP from Mycobacterium celatum, an opportunistic pathogen. The sequence of pCLP revealed at least 19 putative open reading frames (ORFs). Expression of pCLP genes in exponential-phase cultures was determined by reverse transcriptase PCR (RT-PCR). Twelve ORFs were expressed, whereas no transcription of the 7 other ORFs of pCLP was detected. Five of the 12 transcribed ORFs detected by RT-PCR are of unknown function. Sequence analysis revealed similar loci in both M. celatum pCLP and the Mycobacterium tuberculosis chromosome, including transposase-related sequences. This result suggests horizontal transfer between these two organisms. pCLP also contains ORFs that are similar to genes of bacterial circular plasmids involved in partition (par operon) and postsegregational (pem operon) mechanisms. Functional analysis of these ORFs suggests that they probably carry out similar maintenance roles in pCLP.


Infection and Immunity | 2008

Targeted Mutagenesis in Pathogenic Leptospira Species: Disruption of the LigB Gene Does Not Affect Virulence in Animal Models of Leptospirosis

Julio Croda; Cláudio Pereira Figueira; Elsio A. Wunder; Cleiton S. Santos; Mitermayer G. Reis; Albert I. Ko; Mathieu Picardeau

ABSTRACT The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spcr) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.

Collaboration


Dive into the Mathieu Picardeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azad Eshghi

University of Victoria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge