Mathieu Pinot
Curie Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathieu Pinot.
Science | 2014
Mathieu Pinot; Stefano Vanni; Sophie Pagnotta; Sandra Lacas-Gervais; Laurie-Anne Payet; Thierry Ferreira; Romain Gautier; Bruno Goud; Bruno Antonny; Hélène Barelli
Bending the benefits of polyunsaturates We have often heard that it is beneficial to eat polyunsaturated fatty acids. We also know that some organelles such as synaptic vesicles are extremely rich in polyunsaturated lipids. However, what polyunsaturated lipids do in our body is unclear. Using cell biology, biochemical reconstitutions, and molecular dynamics, Pinot et al. show that polyunsaturated phospholipids can change the response of membranes to proteins involved in membrane curvature sensing, membrane shaping, and membrane fission. Polyunsaturated phospholipids make the plasma membrane more amenable to deformation; facilitate endocytosis; and, in reconstitution experiments, increased membrane fission by the dynamin-endophilin complex. Science, this issue p. 693 Certain membrane lipids adapt their conformation to membrane curvature, facilitating membrane deformation and fission. Phospholipids (PLs) with polyunsaturated acyl chains are extremely abundant in a few specialized cellular organelles such as synaptic vesicles and photoreceptor discs, but their effect on membrane properties is poorly understood. Here, we found that polyunsaturated PLs increased the ability of dynamin and endophilin to deform and vesiculate synthetic membranes. When cells incorporated polyunsaturated fatty acids into PLs, the plasma membrane became more amenable to deformation by a pulling force and the rate of endocytosis was accelerated, in particular, under conditions in which cholesterol was limiting. Molecular dynamics simulations and biochemical measurements indicated that polyunsaturated PLs adapted their conformation to membrane curvature. Thus, by reducing the energetic cost of membrane bending and fission, polyunsaturated PLs may help to support rapid endocytosis.
Science | 2013
Julie Lafaurie-Janvore; Paolo Maiuri; Irène Wang; Mathieu Pinot; Jean-Baptiste Manneville; Timo Betz; Martial Balland; Matthieu Piel
Making the Final Cut Abscission, the final separation of two daughter cells, was long thought to be an unimportant step in cytokinesis, triggered merely by the cells pulling strongly enough on the bridge to rupture it. Research over the past 10 years, however, has challenged this notion. Defects in cutting the cytokinetic bridge can lead to the formation of large networks of connected cells or to binucleate cells. Lafaurie-Janvore et al. (p. 1625) now show that the forces postmitotic cells exert on the cytokinetic bridge play an important role in abscission: Surprisingly, increasing the tension in the bridge inhibits abscission, while reducing tension induces abscission. This could provide a sensing mechanism to ensure that daughter cells establish sound connections with their surrounding cells and matrix before detaching from one another. When a daughter cell lets go, the mother cell cuts it loose. The last step of cell division, cytokinesis, produces two daughter cells that remain connected by an intercellular bridge. This state often represents the longest stage of the division process. Severing the bridge (abscission) requires a well-described series of molecular events, but the trigger for abscission remains unknown. We found that pulling forces exerted by daughter cells on the intercellular bridge appear to regulate abscission. Counterintuitively, these forces prolonged connection, whereas a release of tension induced abscission. Tension release triggered the assembly of ESCRT-III (endosomal sorting complex required for transport–III), which was followed by membrane fission. This mechanism may allow daughter cells to remain connected until they have settled in their final locations, a process potentially important for tissue organization and morphogenesis.
Journal of the American Chemical Society | 2009
Aurélien Dif; Fouzia Boulmedais; Mathieu Pinot; Victor Roullier; Michèle Baudy-Floc'h; Frédéric M. Coquelle; Samuel Clarke; Pierre Neveu; Françoise Vignaux; Roland Le Borgne; Maxime Dahan; Zoher Gueroui; Valérie Marchi-Artzner
The use of the semiconductor quantum dots (QD) as biolabels for both ensemble and single-molecule tracking requires the development of simple and versatile methods to target individual proteins in a controlled manner, ideally in living cells. To address this challenge, we have prepared small and stable QDs (QD-ND) using a surface coating based on a peptide sequence containing a tricysteine, poly(ethylene glycol) (PEG), and an aspartic acid ligand. These QDs, with a hydrodynamic diameter of 9 +/- 1.5 nm, can selectively bind to polyhistidine-tagged (histag) proteins in vitro or in living cells. We show that the small and monodisperse size of QD-ND allows for the formation of QD-ND/histag protein complexes of well-defined stoichiometry and that the 1:1 QD/protein complex can be isolated and purified by gel electrophoresis without any destabilization in the nanomolar concentration range. We also demonstrate that QD-ND can be used to specifically label a membrane receptor with an extracellular histag expressed in living HeLa cells. Here, cytotoxicity tests reveal that cell viability remains high under the conditions required for cellular labeling with QD-ND. Finally, we apply QD-ND complexed with histag end binding protein-1 (EB1), a microtubule associated protein, to single-molecule tracking in Xenopus extracts. Specific colocalization of QD-ND/EB1 with microtubules during the mitotic spindle formation demonstrates that QD-ND and our labeling strategy provide an efficient approach to monitor the dynamic behavior of proteins involved in complex biological functions.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Mathieu Pinot; Villier Steiner; Benoit Dehapiot; Byung-Kuk Yoo; Franck Chesnel; Laurent Blanchoin; Charles Kervrann; Zoher Gueroui
In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells.
Current Biology | 2014
Kalpana Mandal; Mathieu Pinot; Jessica Hoffmann; Yara Abidine; Walter Sigaut; Sabine Bardin; Kristine Schauer; Bruno Goud; Jean-Baptiste Manneville
BACKGROUND In vitro studies have shown that physical parameters, such as membrane curvature, tension, and composition, influence the budding and fission of transport intermediates. Endocytosis in living cells also appears to be regulated by the mechanical load experienced by the plasma membrane. In contrast, how these parameters affect intracellular membrane trafficking in living cells is not known. To address this question, we investigate here the impact of a mechanical stress on the organization of the Golgi complex and on the formation of transport intermediates from the Golgi complex. RESULTS Using confocal microscopy, we visualize the deformation of Rab6-positive Golgi membranes applied by an internalized microsphere trapped in optical tweezers and simultaneously measure the corresponding forces. Our results show that the force necessary to deform Golgi membranes drops when actin dynamics is altered and correlates with myosin II activity. We also show that the applied stress has a long-range effect on Golgi membranes, perturbs the dynamics of Golgi-associated actin, and induces a sharp decrease in the formation of Rab6-positive vesicles from the Golgi complex as well as tubulation of Golgi membranes. CONCLUSIONS We suggest that acto-myosin contractility strongly contributes to the local rigidity of the Golgi complex and regulates the mechanics of the Golgi complex to control intracellular membrane trafficking.
Molecular Membrane Biology | 2010
Mathieu Pinot; Bruno Goud; Jean-Baptiste Manneville
Abstract Coat proteins orchestrate membrane budding and molecular sorting during the formation of transport intermediates. Coat protein complex I (COPI) vesicles shuttle between the Golgi apparatus and the endoplasmic reticulum and between Golgi stacks. The formation of a COPI vesicle proceeds in four steps: coat self-assembly, membrane deformation into a bud, fission of the coated vesicle and final disassembly of the coat to ensure recycling of coat components. Although some issues are still actively debated, the molecular mechanisms of COPI vesicle formation are now fairly well understood. In this review, we argue that physical parameters are critical regulators of COPI vesicle formation. We focus on recent real-time in vitro assays highlighting the role of membrane tension, membrane composition, membrane curvature and lipid packing in membrane remodelling and fission by the COPI coat.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Nicolas Loyer; Irina Kolotuev; Mathieu Pinot; Roland Le Borgne
Significance This work addresses the interplay among membrane trafficking, cell adhesion, and tissue integrity maintenance in the Drosophila female germline. The clathrin adaptor protein 1 (AP-1) complex is shown to regulate the trafficking of E-cadherin to ring canals (RCs), a structure resulting from incomplete cytokinesis and allowing intercellular communication. E-cadherin assembles adhesive clusters that, as revealed by EM analyses, organize a dense microvilli meshwork wrapping around RCs. Although dispensable for RC biogenesis and maturation, AP-1 and E-cadherin are required to maintain RCs’ anchoring to the plasma membrane at the onset of vitellogenesis, when cells experience exponential growth and increased mechanical stress. Our study unravels a previously unidentified function for E-cadherin in maintaining RC anchoring to the plasma membrane. Intercellular bridges called “ring canals” (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs’ anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin–containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs’ anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin–dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth.
bioRxiv | 2018
Mathieu Pinot; Stefano Vanni; Ernesto E. Ambroggio; Bruno Goud; Jean-Baptiste Manneville
Lipid packing defects favor the binding of proteins to cellular membranes by creating spaces between lipid head groups that allow the insertion of amphipathic helices or lipid modifications. The density of packing defects in a lipid membrane is well known to increase with membrane curvature and in the presence of conical-shaped lipids. In contrast, the role of membrane tension in the formation of lipid packing defects has been poorly investigated. Here we use a combination of numerical simulations and experiments to measure the effect of membrane tension on the density of lipid packing defects. We first monitor the binding of ALPS (amphipathic lipid packing sensor) to giant unilamellar vesicles and observe a striking periodic binding of ALPS that we attribute to osmotically-induced membrane tension and transient membrane pore formation. Using micropipette aspiration experiments, we show that a high membrane tension induces a reversible increase in the density of lipid packing defects. We next focus on packing defects induced by lipid shape and show that conical lipids generate packing defects similar to that induced by membrane tension and enhance membrane deformation due to the insertion of the ALPS helix. Both cyclic ALPS binding and the cooperative effect of ALPS binding and conical lipids on membrane deformation result from an interplay between helix insertion and lipid packing defects created by membrane tension, conical lipids and/or membrane curvature. We propose that feedback mechanisms involving membrane tension, lipid shape and membrane curvature play a crucial role in membrane deformation and intracellular transport events.
bioRxiv | 2017
Ghislain Gillard; Ophélie Nicolle; Thibault Brugiere; Sylvain Prigent; Mathieu Pinot; Grégoire Michaux
Tissues from different developmental origins must interact to achieve coordinated morphogenesis at the level of a whole organism. C. elegans embryonic elongation is controlled by actomyosin dynamics which trigger cell shape changes in the epidermis and by muscle contractions, but how the two processes are coordinated is not known. We found that a tissue-wide tension generated by muscle contractions and relayed by tendon-like hemidesmosomes in the dorso-ventral epidermis is required to establish a planar polarity of the apical PAR module in the lateral epidermis. This planar polarized PAR module then controls actin planar organization, thus determining the orientation of cell shape changes and the elongation axis of the whole embryo. This trans-tissular mechanotransduction pathway thus contributes to coordinate the morphogenesis of three embryonic tissues.
Current Biology | 2009
Mathieu Pinot; F. Chesnel; Jacek Z. Kubiak; Isabelle Arnal; François Nédélec; Z. Gueroui