Mathijs A. Sanders
Erasmus University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mathijs A. Sanders.
Cell | 2014
Stefan Gröschel; Mathijs A. Sanders; Remco M. Hoogenboezem; Elzo de Wit; Britta A.M. Bouwman; Claudia Erpelinck; V H J van der Velden; Marije Havermans; Roberto Avellino; Kirsten van Lom; Elwin Rombouts; Konstanze Döhner; H. Berna Beverloo; James E. Bradner; Hartmut Döhner; Bob Löwenberg; Peter J. M. Valk; Eric M. J. Bindels; Wouter de Laat; Ruud Delwel
Chromosomal rearrangements without gene fusions have been implicated in leukemogenesis by causing deregulation of proto-oncogenes via relocation of cryptic regulatory DNA elements. AML with inv(3)/t(3;3) is associated with aberrant expression of the stem-cell regulator EVI1. Applying functional genomics and genome-engineering, we demonstrate that both 3q rearrangements reposition a distal GATA2 enhancer to ectopically activate EVI1 and simultaneously confer GATA2 functional haploinsufficiency, previously identified as the cause of sporadic familial AML/MDS and MonoMac/Emberger syndromes. Genomic excision of the ectopic enhancer restored EVI1 silencing and led to growth inhibition and differentiation of AML cells, which could be replicated by pharmacologic BET inhibition. Our data show that structural rearrangements involving the chromosomal repositioning of a single enhancer can cause deregulation of two unrelated distal genes, with cancer as the outcome.
Blood | 2011
Erdogan Taskesen; Lars Bullinger; Andrea Corbacioglu; Mathijs A. Sanders; Claudia Erpelinck; Bas J. Wouters; Sonja van der Poel-van de Luytgaarde; Jürgen Krauter; Arnold Ganser; Richard F. Schlenk; Bob Löwenberg; Ruud Delwel; Hartmut Döhner; Peter J. M. Valk; Konstanze Döhner
We evaluated concurrent gene mutations, clinical outcome, and gene expression signatures of CCAAT/enhancer binding protein alpha (CEBPA) double mutations (CEBPA(dm)) versus single mutations (CEBPA(sm)) in 1182 cytogenetically normal acute myeloid leukemia (AML) patients (16-60 years of age). We identified 151 (12.8%) patients with CEBPA mutations (91 CEBPA(dm) and 60 CEBPA(sm)). The incidence of germline mutations was 7% (5 of 71), including 3 C-terminal mutations. CEBPA(dm) patients had a lower frequency of concurrent mutations than CEBPA(sm) patients (P < .0001). Both, groups were associated with a favorable outcome compared with CEBPA(wt) (5-year overall survival [OS] 63% and 56% vs 39%; P < .0001 and P = .05, respectively). However, in multivariable analysis only CEBPA(dm) was a prognostic factor for favorable OS outcome (hazard ratio [HR] 0.36, P < .0001; event-free survival, HR 0.41, P < .0001; relapse-free survival, HR 0.55, P = .001). Outcome in CEBPA(sm) is dominated by concurrent NPM1 and/or FLT3 internal tandem duplication mutations. Unsupervised and supervised GEP analyses showed that CEBPA(dm) AML (n = 42), but not CEBPA(sm) AML (n = 18), expressed a unique gene signature. A 25-probe set prediction signature for CEBPA(dm) AML showed 100% sensitivity and specificity. Based on these findings, we propose that CEBPA(dm) should be clearly defined from CEBPA(sm) AML and considered as a separate entity in the classification of AML.
Blood | 2012
Ana Flávia Tibúrcio Ribeiro; Marta Pratcorona; Claudia Erpelinck-Verschueren; Veronika Rockova; Mathijs A. Sanders; Saman Abbas; Maria E. Figueroa; Annelieke Zeilemaker; Ari Melnick; Bob Löwenberg; Peter J. M. Valk; Ruud Delwel
The prevalence, the prognostic effect, and interaction with other molecular markers of DNMT3A mutations was studied in 415 patients with acute myeloid leukemia (AML) younger than 60 years. We show mutations in DNMT3A in 96 of 415 patients with newly diagnosed AML (23.1%). Univariate Cox regression analysis showed that patients with DNMT3A(mutant) AML show significantly worse overall survival (OS; P = .022; hazard ratio [HR], 1.38; 95% confidence interval [CI], 1.04-1.81), and relapse-free survival (RFS; P = .005; HR, 1.52; 95% CI, 1.13-2.05) than DNMT3A(wild-type) AMLs. In a multivariable analysis, DNMT3A mutations express independent unfavorable prognostic value for OS (P = .003; HR, 1.82; 95% CI, 1.2-2.7) and RFS (P < .001; HR, 2.2; 95% CI, 1.4-3.3). In a composite genotypic subset of cytogenetic intermediate-risk AML without FLT3-ITD and NPM1 mutations, this association is particularly evident (OS: P = .013; HR, 2.09; 95% CI, 1.16-3.77; RFS: P = .001; HR, 2.65; 95% CI, 1.48-4.89). The effect of DNMT3A mutations in human AML remains elusive, because DNMT3A(mutant) AMLs did not express a methylation or gene expression signature that discriminates them from patients with DNMT3A(wild-type) AML. We conclude that DNMT3A mutation status is an important factor to consider for risk stratification of patients with AML.
Blood | 2012
Renée Beekman; Marijke Valkhof; Mathijs A. Sanders; Paulette van Strien; Jurgen R. Haanstra; Lianne Broeders; Wendy M.C. Geertsma-Kleinekoort; Anjo J. P. Veerman; Roeland G. W. Verhaak; Bob Löwenberg; Ivo P. Touw
Severe congenital neutropenia (SCN) is a BM failure syndrome with a high risk of progression to acute myeloid leukemia (AML). The underlying genetic changes involved in SCN evolution to AML are largely unknown. We obtained serial hematopoietic samples from an SCN patient who developed AML 17 years after the initiation of G-CSF treatment. Next- generation sequencing was performed to identify mutations during disease progression. In the AML phase, we found 12 acquired nonsynonymous mutations. Three of these, in CSF3R, LLGL2, and ZC3H18, co-occurred in a subpopulation of progenitor cells already in the early SCN phase. This population expanded over time, whereas clones harboring only CSF3R mutations disappeared from the BM. The other 9 mutations were only apparent in the AML cells and affected known AML-associated genes (RUNX1 and ASXL1) and chromatin remodelers (SUZ12 and EP300). In addition, a novel CSF3R mutation that conferred autonomous proliferation to myeloid progenitors was found. We conclude that progression from SCN to AML is a multistep process, with distinct mutations arising early during the SCN phase and others later in AML development. The sequential gain of 2 CSF3R mutations implicates abnormal G-CSF signaling as a driver of leukemic transformation in this case of SCN.
Haematologica | 2012
Marta Pratcorona; Saman Abbas; Mathijs A. Sanders; Jasper Koenders; François G. Kavelaars; Claudia Erpelinck-Verschueren; Annelieke Zeilemakers; Bob Löwenberg
Somatic mutations in the additional sex comb-like 1 (ASXL1) gene have been described in various types of myeloid malignancies, including acute myeloid leukemia. Analysis of novel markers, such as ASXL1 mutations, in independent clinical trials is indispensable before considering them for clinical decision-making. We analyzed 882 well-characterized acute myeloid leukemia cases to determine the prevalence and prognostic impact of ASXL1 exon12 mutations. Truncating ASXL1 mutations were present in 46 cases (5.3%). ASXL1 mutations were inversely associated with FLT3 internal tandem duplications and mutually exclusive with NPM1 mutations. ASXL1 mutations were an unfavorable prognostic factor as regards survival (median overall survival 15.9 months vs. 22.3 months; P=0.019), with a significantly lower complete response rate (61% vs. 79.6%; P=0.004). In multivariate analyses, ASXL1 mutations were independently associated with inferior poor overall survival (HR 1.52, P=0.032). In conclusion, ASXL1 mutations are common mutations in acute myeloid leukemia and indicate a poor therapy outcome.
Nature Medicine | 2016
Sheng Li; Francine E. Garrett-Bakelman; Stephen S. Chung; Mathijs A. Sanders; Todd Hricik; Franck Rapaport; Jay Patel; Richard Dillon; Priyanka Vijay; Anna L. Brown; Alexander E. Perl; Joy Cannon; Lars Bullinger; Selina M. Luger; Michael W. Becker; Ian D. Lewis; L. B. To; Ruud Delwel; Bob Löwenberg; Hartmut Döhner; Konstanze Döhner; Monica L. Guzman; Duane C. Hassane; Gail J. Roboz; David Grimwade; Peter J. M. Valk; Richard J. D'Andrea; Martin Carroll; Christopher Y. Park; Donna Neuberg
Genetic heterogeneity contributes to clinical outcome and progression of most tumors, but little is known about allelic diversity for epigenetic compartments, and almost no data exist for acute myeloid leukemia (AML). We examined epigenetic heterogeneity as assessed by cytosine methylation within defined genomic loci with four CpGs (epialleles), somatic mutations, and transcriptomes of AML patient samples at serial time points. We observed that epigenetic allele burden is linked to inferior outcome and varies considerably during disease progression. Epigenetic and genetic allelic burden and patterning followed different patterns and kinetics during disease progression. We observed a subset of AMLs with high epiallele and low somatic mutation burden at diagnosis, a subset with high somatic mutation and lower epiallele burdens at diagnosis, and a subset with a mixed profile, suggesting distinct modes of tumor heterogeneity. Genes linked to promoter-associated epiallele shifts during tumor progression showed increased single-cell transcriptional variance and differential expression, suggesting functional impact on gene regulation. Thus, genetic and epigenetic heterogeneity can occur with distinct kinetics likely to affect the biological and clinical features of tumors.
Current Opinion in Hematology | 2013
Mathijs A. Sanders
PURPOSE OF REVIEW Acute myeloid leukaemia (AML) is a heterogeneous disease with a variable response to therapy. The heterogeneity of AML is evident from variations in morphology, immunophenotype, cytogenetics and molecular abnormalities. The introduction of genome-wide technologies has enabled an even more detailed molecular analysis of AML. As a result, the molecular landscape of AML is rapidly evolving. The purpose of this review is to discuss the recent advances made in this field, with a special focus on risk stratification of AML. RECENT FINDINGS Clinical AML has been analysed in great molecular detail by gene expression profiling and more recently through epigenetic profiling and next generation sequencing. This has resulted in the identification of novel biomarkers, some of which appear to have a consistent clinical impact in AML, that is mutations in the genes encoding DNA (cytosine-5)-methyltransferase 3 alpha (DNMT3A), additional sex combs-like 1 (ASXL1), tet methylcytosine dioxygenase 2 (TET2) and Runt-related transcription factor 1 (RUNX1). In addition, massively parallel sequencing has revealed a great mutational heterogeneity as well as temporal clonal evolution in AML. SUMMARY The list of acquired mutations with clinical value in AML is growing. Clinical implementation of this multitude of markers will require integrated approaches and selection of markers to facilitate AML risk stratification in the future. The revealed molecular heterogeneity and evolution in AML will have implications for developing targeted therapies.
Blood | 2012
Mir Farshid Alemdehy; Nicole van Boxtel; Hans de Looper; Iris J. van den Berge; Mathijs A. Sanders; Ivo P. Touw; Stefan J. Erkeland
MicroRNAs (miRNAs) have the potential to regulate cellular differentiation programs; however, miRNA deficiency in primary hematopoietic stem cells (HSCs) results in HSC depletion in mice, leaving the question of whether miRNAs play a role in early-lineage decisions un-answered. To address this issue, we deleted Dicer1, which encodes an essential RNase III enzyme for miRNA biogenesis, in murine CCAAT/enhancer-binding protein α (C/EBPA)-positive myeloid-committed progenitors in vivo. In contrast to the results in HSCs, we found that miRNA depletion affected neither the number of myeloid progenitors nor the percentage of C/EBPA-positive progenitor cells. Analysis of gene-expression profiles from wild-type and Dicer1-deficient granulocyte-macrophage progenitors (GMPs) revealed that 20 miRNA families were active in GMPs. Of the derepressed miRNA targets in Dicer1-null GMPs, 27% are normally exclusively expressed in HSCs or are specific for multipotent progenitors and erythropoiesis, indicating an altered gene-expression landscape. Dicer1-deficient GMPs were defective in myeloid development in vitro and exhibited an increased replating capacity, indicating the regained self-renewal potential of these cells. In mice, Dicer1 deletion blocked monocytic differentiation, depleted macrophages, and caused myeloid dysplasia with morphologic features of Pelger-Huët anomaly. These results provide evidence for a miRNA-controlled switch for a cellular program of self-renewal and expansion toward myeloid differentiation in GMPs.
Leukemia | 2007
B J Wouters; Mathijs A. Sanders; Sanne Lugthart; Wendy M.C. Geertsma-Kleinekoort; E. van Drunen; H B Beverloo; Bob Löwenberg; Peter J. M. Valk; Ruud Delwel
Segmental uniparental disomy as a recurrent mechanism for homozygous CEBPA mutations in acute myeloid leukemia
Blood | 2014
Erdogan Taskesen; Marije Havermans; Kirsten van Lom; Mathijs A. Sanders; Yvette van Norden; Eric M. J. Bindels; Remco M. Hoogenboezem; Marcel J. T. Reinders; Maria E. Figueroa; Peter J. M. Valk; Bob Löwenberg; Ari Melnick; Ruud Delwel
Mutations in splice factor (SF) genes occur more frequently in myelodysplastic syndromes (MDS) than in acute myeloid leukemias (AML). We sequenced complementary DNA from bone marrow of 47 refractory anemia with excess blasts (RAEB) patients, 29 AML cases with low marrow blast cell count, and 325 other AML patients and determined the presence of SF-hotspot mutations in SF3B1, U2AF35, and SRSF2. SF mutations were found in 10 RAEB, 12 AML cases with low marrow blast cell count, and 25 other AML cases. Our study provides evidence that SF-mutant RAEB and SF-mutant AML are clinically, cytologically, and molecularly highly similar. An integrated analysis of genomewide messenger RNA (mRNA) expression profiling and DNA-methylation profiling data revealed 2 unique patient clusters highly enriched for SF-mutant RAEB/AML. The combined genomewide mRNA expression profiling/DNA-methylation profiling signatures revealed 1 SF-mutant patient cluster with an erythroid signature. The other SF-mutant patient cluster was enriched for NRAS/KRAS mutations and showed an inferior survival. We conclude that SF-mutant RAEB/AML constitutes a related disorder overriding the artificial separation between AML and MDS, and that SF-mutant RAEB/AML is composed of 2 molecularly and clinically distinct subgroups. We conclude that SF-mutant disorders should be considered as myeloid malignancies that transcend the boundaries of AML and MDS.