Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathilda Sjöberg is active.

Publication


Featured researches published by Mathilda Sjöberg.


Journal of Virology | 2006

Vpu and Tsg101 Regulate Intracellular Targeting of the Human Immunodeficiency Virus Type 1 Core Protein Precursor Pr55gag

Kirsi Harila; Ian A. Prior; Mathilda Sjöberg; Antti Salminen; Jorma Hinkula; Maarit Suomalainen

ABSTRACT Assembly of human immunodeficiency virus type 1 (HIV-1) is directed by the viral core protein Pr55gag. Depending on the cell type, Pr55gag accumulates either at the plasma membrane or on late endosomes/multivesicular bodies. Intracellular localization of Pr55gag determines the site of virus assembly, but molecular mechanisms that define cell surface or endosomal targeting of Pr55gag are poorly characterized. We have analyzed targeting of newly synthesized Pr55gag in HeLa H1 cells by pulse-chase studies and subcellular fractionations. Our results indicated that Pr55gag was inserted into the plasma membrane and, when coexpressed with the viral accessory protein Vpu, Pr55gag remained at the plasma membrane and virions assembled at this site. In contrast, Pr55gag expressed in the absence of Vpu was initially inserted into the plasma membrane, but subsequently endocytosed, and virus assembly was partially shifted to internal membranes. This endocytosis of Pr55gag required the host protein Tsg101. These results identified a previously unknown role for Vpu and Tsg101 as regulators for the endocytic uptake of Pr55gag and suggested that the site of HIV-1 assembly is determined by factors that regulate the endocytosis of Pr55gag.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure

Shang Rung Wu; Robin Löving; Birgitta Lindqvist; Hans Hebert; Philip J.B. Koeck; Mathilda Sjöberg; Henrik Garoff

The HIV-1 spike is a trimer of the transmembrane gp41 and the peripheral gp120 subunit pair. It is activated for virus–cell membrane fusion by binding sequentially to CD4 and to a chemokine receptor. Here we have studied the structural transition of the trimeric spike during the activation process. We solubilized and isolated unliganded and CD4-bound spikes from virus-like particles and used cryoelectron microscopy to reconstruct their 3D structures. In order to increase the yield and stability of the spike, we used an endodomain deleted and gp120-gp41 disulfide-linked variant. The unliganded spike displayed a hollow cage-like structure where the gp120-gp41 protomeric units formed a roof and bottom, and separated lobes and legs on the sides. The tripod structure was verified by fitting the recent atomic core structure of gp120 with intact N- and C-terminal ends into the spike density map. This defined the lobe as gp120 core, showed that the legs contained the polypeptide termini, and suggested the deleted variable loops V1/V2 and V3 to occupy the roof and gp41 the bottom. CD4 binding shifted the roof density peripherally and condensed the bottom density centrally. Fitting with a V3 containing gp120 core suggested that the V1/V2 loops in the roof were displaced laterally and the V3 lifted up, while the core and leg were kept in place. The loop displacements probably prepared the spike for coreceptor interaction and roof opening so that a new fusion-active gp41 structure, assembled at the center of the cage bottom, could reach the target membrane.


Journal of Virology | 2003

Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion.

Mathilda Sjöberg; Henrik Garoff

ABSTRACT The alphavirus envelope is built by heterodimers of the membrane proteins E1 and E2. The complex is formed as a p62E1 precursor in the endoplasmic reticulum. During transit to the plasma membrane (PM), it is cleaved into mature E1-E2 heterodimers, which are oligomerized into trimeric complexes, so-called spikes that bind both to each other and, at the PM, also to nucleocapsid (NC) structures under the membrane. These interactions drive the budding of new virus particles from the cell surface. The virus enters new cells by a low-pH-induced membrane fusion event where both inter- and intraheterodimer interactions are reorganized to establish a fusion-active membrane protein complex. There are no intact heterodimers left after fusion activation; instead, an E1 homotrimer remains in the cellular (or viral) membrane. We analyzed whether these transitions depend on interactions in the transmembrane (TM) region of the heterodimer. We observed a pattern of conserved glycines in the TM region of E1 and made two mutants where either the glycines only (SFV/E14L) or the whole segment around the glycines (SFV/E111L) was replaced by leucines. We found that both mutations decreased the stability of the heterodimer and increased the formation of the E1 homotrimer at a suboptimal fusion pH, while the fusion activity was decreased. This suggested that TM interactions play a role in virus assembly and entry and that anomalous or uncoordinated protein reorganizations take place in the mutants. In addition, the SFV/E111L mutant was completely deficient in budding, which may reflect an inability to form multivalent NC interactions at the PM.


Structure | 1994

Visualization of fusion activation in the Semliki Forest virus spike.

John M. Kenney; Mathilda Sjöberg; Henrik Garoff; Stephen D. Fuller

BACKGROUND Viral spike proteins such as those of Semliki Forest virus (SFV) undergo a conformational change triggered by low pH which results in the fusion of the viral envelope with cellular membranes. The viral spike precursor of SFV is insensitive to low pH, and hence is fusion incompetent, until it is proteolytically cleaved to give the fusion competent mature form. RESULTS Three-dimensional image reconstructions from cryo-electron micrographs were used to compare the virion structure of wild-type SFV with that of a mutant SFV in which cleavage of the spike precursor had been blocked. Upon maturation to the fusion competent form, the spike undergoes a conformational change in which copies of the polypeptide containing the fusion sequence (E1) move from peripheral to lateral positions bringing them closer together. CONCLUSIONS This first visualization of the maturation of a viral spike protein complex suggests a mechanism for the conformational change which controls the fusion process.


Journal of Virology | 2006

Furin Cleavage Potentiates the Membrane Fusion-Controlling Intersubunit Disulfide Bond Isomerization Activity of Leukemia Virus Env

Mathilda Sjöberg; Michael Wallin; Birgitta Lindqvist; Henrik Garoff

ABSTRACT The membrane fusion protein of murine leukemia virus is a trimer of a disulfide-linked peripheral-transmembrane (SU-TM) subunit complex. The intersubunit disulfide bond is in SU linked to a disulfide bond isomerization motif, CXXC, with which the virus controls its fusion reaction (M. Wallin, M. Ekström, and H. Garoff, EMBO J. 23:54-65, 2004). Upon receptor binding the isomerase rearranges the intersubunit disulfide bond into a disulfide bond isomer within the motif. This facilitates SU dissociation and fusion activation in the TM subunit. In the present study we have asked whether furin cleavage of the Env precursor potentiates the isomerase to be triggered. To this end we accumulated the late form of the precursor, gp90, in the cell by incubation in the presence of a furin-inhibiting peptide. The isomerization was done by NP-40 incubation or by a heat pulse under alkylation-free conditions. The cells were lysed in the presence of alkylator, and the precursor was immunoprecipitated, gel isolated, deglycosylated, and subjected to complete trypsin digestion. Disulfide-linked peptide complexes were separated by sodium dodecyl sulfate-tricine-polyacrylamide gel electrophoresis under nonreducing conditions. This assay revealed the size of the characteristic major disulfide-linked peptide complex that differentiates the two isomers of the disulfide bond between Cys336 (or Cys339) and Cys563, i.e., the bond corresponding to the intersubunit disulfide bond. The analyses showed that the isomerase was five- to eightfold more resistant to triggering in the precursor than in the mature, cleaved form. This suggests that the isomerase becomes potentiated for triggering by a structural change in Env that is induced by furin cleavage in the cell.


Journal of Virology | 2008

R-Peptide Cleavage Potentiates Fusion-Controlling Isomerization of the Intersubunit Disulfide in Moloney Murine Leukemia Virus Env

Robin Löving; Kejun Li; Michael Wallin; Mathilda Sjöberg; Henrik Garoff

ABSTRACT Fusion of the membrane of the Moloney murine leukemia virus (Mo-MLV) Env protein is facilitated by cleavage of the R peptide from the cytoplasmic tail of its TM subunit, but the mechanism for this effect has remained obscure. The fusion is also controlled by the isomerization of the intersubunit disulfide of the Env SU-TM complex. In the present study, we used several R-peptide-cleavage-inhibited virus mutants to show that the R peptide suppresses the isomerization reaction in both in vitro and in vivo assays. Thus, the R peptide affects early steps in the activation pathway of murine leukemia virus Env.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Maturation cleavage of the murine leukemia virus Env precursor separates the transmembrane subunits to prime it for receptor triggering

Robin Löving; Shang Rung Wu; Mathilda Sjöberg; Birgitta Lindqvist; Henrik Garoff

The Env protein of murine leukemia virus matures by two cleavage events. First, cellular furin separates the receptor binding surface (SU) subunit from the fusion-active transmembrane (TM) subunit and then, in the newly assembled particle, the viral protease removes a 16-residue peptide, the R-peptide from the endodomain of the TM. Both cleavage events are required to prime the Env for receptor-triggered activation. Cryoelectron microscopy (cryo-EM) analyses have shown that the mature Env forms an open cage-like structure composed of three SU–TM complexes, where the TM subunits formed separated Env legs. Here we have studied the structure of the R-peptide precursor Env by cryo-EM. TM cleavage in Moloney murine leukemia virus was inhibited by amprenavir, and the Envs were solubilized in Triton X-100 and isolated by sedimentation in a sucrose gradient. We found that the legs of the R-peptide Env were held together by trimeric interactions at the very bottom of the Env. This suggested that the R-peptide ties the TM legs together and that this prevents the activation of the TM for fusion. The model was supported by further cryo-EM studies using an R-peptide Env mutant that was fusion-competent despite an uncleaved R-peptide. The Env legs of this mutant were found to be separated, like in the mature Env. This shows that it is the TM leg separation, normally caused by R-peptide cleavage, that primes the Env for receptor triggering.


Journal of Virology | 2011

Activation of the Alphavirus Spike Protein Is Suppressed by Bound E3

Mathilda Sjöberg; Birgitta Lindqvist; Henrik Garoff

ABSTRACT Alphaviruses are taken up into the endosome of the cell, where acidic conditions activate the spikes for membrane fusion. This involves dissociation of the three E2-E1 heterodimers of the spike and E1 interaction with the target membrane as a homotrimer. The biosynthesis of the heterodimer as a pH-resistant p62-E1 precursor appeared to solve the problem of premature activation in the late and acidic parts of the biosynthetic transport pathway in the cell. However, p62 cleavage into E2 and E3 by furin occurs before the spike has left the acidic compartments, accentuating the problem. In this work, we used a furin-resistant Semliki Forest virus (SFV) mutant, SFVSQL, to study the role of E3 in spike activation. The cleavage was reconstituted with proteinase K in vitro using free virus or spikes on SFVSQL-infected cells. We found that E3 association with the spikes was pH dependent, requiring acidic conditions, and that the bound E3 suppressed spike activation. This was shown in an in vitro spike activation assay monitoring E1 trimer formation with liposomes and a fusion-from-within assay with infected cells. Furthermore, the wild type, SFVwt, was found to bind significant amounts of E3, especially if produced in dense cultures, which lowered the pH of the culture medium. This E3 also suppressed spike activation. The results suggest that furin-cleaved E3 continues to protect the spike from premature activation in acidic compartments of the cell and that its release in the neutral extracellular space primes the spike for low-pH activation.


The EMBO Journal | 2008

Turning of the receptor‐binding domains opens up the murine leukaemia virus Env for membrane fusion

Shang Rung Wu; Mathilda Sjöberg; Michael Wallin; Birgitta Lindqvist; Maria Ekström; Hans Hebert; Philip J.B. Koeck; Henrik Garoff

The activity of the membrane fusion protein Env of Moloney mouse leukaemia virus is controlled by isomerization of the disulphide that couples its transmembrane (TM) and surface (SU) subunits. We have arrested Env activation at a stage prior to isomerization by alkylating the active thiol in SU and compared the structure of isomerization‐arrested Env with that of native Env. Env trimers of respective form were isolated from solubilized particles by sedimentation and their structures were reconstructed from electron microscopic images of both vitrified and negatively stained samples. We found that the protomeric unit of both trimers formed three protrusions, a top, middle and a lower one. The atomic structure of the receptor‐binding domain of SU fitted into the upper protrusion. This was formed similar to a bent finger. Significantly, in native Env the tips of the fingers were directed against each other enclosing a cavity below, whereas they had turned outward in isomerization‐arrested Env transforming the cavity into an open well. This might subsequently guide the fusion peptides in extended TM subunits into the target membrane.


Journal of Virology | 2013

Inhibition of the HIV-1 Spike by Single-PG9/16-Antibody Binding Suggests a Coordinated-Activation Model for Its Three Protomeric Units

Robin Löving; Mathilda Sjöberg; Shang Rung Wu; James M. Binley; Henrik Garoff

ABSTRACT The HIV-1 spike is composed of three protomeric units, each containing a peripheral gp120 and a transmembrane gp41 subunit. Binding to the CD4 and the chemokine receptors triggers them to mediate virus entry into cells by membrane fusion. The spikes also represent the major target for neutralizing antibodies (Abs) against the virus. We have studied how two related broadly neutralizing Abs, PG9 and PG16, react with the spike. Unexpectedly, this also suggested how the functions of the individual protomers in the spike depend on each other. The Abs have been shown to bind the V1/V2 loops of gp120, located at the top of the spike. Using blue native-polyacrylamide gel electrophoresis (BN-PAGE), we show that only single Abs or antigen-binding fragments could bind to the spikes of HIV-1 virus-like particles. Apparently, binding to one gp120 sterically interferes with binding to the other two subunits in the spike top. Despite this constraint, all of the protomers of the spike became resistant to CD4 binding and subsequent formation of the coreceptor binding site. These activities were measured by monitoring the sequential complex formation of the spike first with Abs and then with soluble 2d- or 4d-CD4 or with soluble CD4 and the CD4 inducible coreceptor binding site Ab 17b in BN-PAGE. The inhibition of the spike by single-Ab binding suggested that the activation reactions of the individual protomeric units are linked to each other in a coordinated activation process.

Collaboration


Dive into the Mathilda Sjöberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen D. Fuller

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Hans Hebert

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Philip J.B. Koeck

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brent Gowen

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge