Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathilde Granke is active.

Publication


Featured researches published by Mathilde Granke.


Bone | 2011

Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women

Mathilde Granke; Quentin Grimal; Amena Saïed; Pierre Nauleau; Françoise Peyrin; Pascal Laugier

At the mesoscale (i.e. over a few millimeters), cortical bone can be described as two-phase composite material consisting of pores and a dense mineralized matrix. The cortical porosity is known to influence the mesoscopic elasticity. Our objective was to determine whether the variations of porosity are sufficient to predict the variations of bone mesoscopic anisotropic elasticity or if change in bone matrix elasticity is an important factor to consider. We measured 21 cortical bone specimens prepared from the mid-diaphysis of 10 women donors (aged from 66 to 98 years). A 50-MHz scanning acoustic microscope (SAM) was used to evaluate the bone matrix elasticity (reflected in impedance values) and porosity. Porosity evaluation with SAM was validated against Synchrotron Radiation μCT measurements. A standard contact ultrasonic method was applied to determine the mesoscopic elastic coefficients. Only matrix impedance in the direction of the bone axis correlated to mesoscale elasticity (adjusted R(2)=[0.16-0.25], p<0.05). The mesoscopic elasticity was found to be highly correlated to the cortical porosity (adj-R(2)=[0.72-0.84], p<10(-5)). Multivariate analysis including both matrix impedance and porosity did not provide a better statistical model of mesoscopic elasticity variations. Our results indicate that, for the elderly population, the elastic properties of the mineralized matrix do not undergo large variations among different samples, as reflected in the low coefficients of variation of matrix impedance (less than 6%). This work suggests that change in the intracortical porosity accounts for most of the variations of mesoscopic elasticity, at least when the analyzed porosity range is large (3-27% in this study). The trend in the variation of mesoscale elasticity with porosity is consistent with the predictions of a micromechanical model consisting of an anisotropic matrix pervaded by cylindrical pores.


PLOS ONE | 2013

Microfibril Orientation Dominates the Microelastic Properties of Human Bone Tissue at the Lamellar Length Scale

Mathilde Granke; Aurélien Gourrier; Fabienne Rupin; Kay Raum; Françoise Peyrin; Manfred Burghammer; Amena Saïed; Pascal Laugier

The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies.


Journal of Bone and Mineral Research | 2015

Identifying Novel Clinical Surrogates to Assess Human Bone Fracture Toughness

Mathilde Granke; Alexander J. Makowski; Sasidhar Uppuganti; Mark D. Does; Jeffry S. Nyman

Fracture risk does not solely depend on strength but also on fracture toughness; ie, the ability of bone material to resist crack initiation and propagation. Because resistance to crack growth largely depends on bone properties at the tissue level, including collagen characteristics, current X‐ray based assessment tools may not be suitable to identify age‐related, disease‐related, or treatment‐related changes in fracture toughness. To identify useful clinical surrogates that could improve the assessment of fracture resistance, we investigated the potential of 1H nuclear magnetic resonance spectroscopy (NMR) and reference point indentation (RPI) to explain age‐related variance in fracture toughness. Harvested from cadaveric femurs (62 human donors), single‐edge notched beam (SENB) specimens of cortical bone underwent fracture toughness testing (R‐curve method). NMR‐derived bound water showed the strongest correlation with fracture toughness properties (r = 0.63 for crack initiation, r = 0.35 for crack growth, and r = 0.45 for overall fracture toughness; p < 0.01). Multivariate analyses indicated that the age‐related decrease in different fracture toughness properties were best explained by a combination of NMR properties including pore water and RPI‐derived tissue stiffness with age as a significant covariate (adjusted R2 = 53.3%, 23.9%, and 35.2% for crack initiation, crack growth, and overall toughness, respectively; p < 0.001). These findings reflect the existence of many contributors to fracture toughness and emphasize the utility of a multimodal assessment of fracture resistance. Exploring the mechanistic origin of fracture toughness, glycation‐mediated nonenzymatic collagen crosslinks and intracortical porosity are possible determinants of bone fracture toughness and could explain the sensitivity of NMR to changes in fracture toughness. Assuming fracture toughness is clinically important to the ability of bone to resist fracture, our results suggest that improvements in fracture risk assessment could potentially be achieved by accounting for water distribution (quantitative ultrashort echo time magnetic resonance imaging) and by a local measure of tissue resistance to indentation, RPI.


Bone | 2014

The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness

Alexander J. Makowski; Sasidhar Uppuganti; Sandra A. Wadeer; Jack M. Whitehead; Barbara Rowland; Mathilde Granke; Anita Mahadevan-Jansen; Xiangli Yang; Jeffry S. Nyman

Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness.


Current Osteoporosis Reports | 2016

Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk

Jeffry S. Nyman; Mathilde Granke; Robert C. Singleton; G.M. Pharr

Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.


Journal of The Mechanical Behavior of Biomedical Materials | 2015

Compressive fatigue and fracture toughness behavior of injectable, settable bone cements.

Andrew J. Harmata; Sasidhar Uppuganti; Mathilde Granke; Scott A. Guelcher; Jeffry S. Nyman

Bone grafts used to repair weight-bearing tibial plateau fractures often experience cyclic loading, and there is a need for bone graft substitutes that prevent failure of fixation and subsequent morbidity. However, the specific mechanical properties required for resorbable grafts to optimize structural compatibility with native bone have yet to be established. While quasi-static tests are utilized to assess weight-bearing ability, compressive strength alone is a poor indicator of in vivo performance. In the present study, we investigated the effects of interfacial bonding on material properties under conditions that re-capitulate the cyclic loading associated with weight-bearing fractures. Dynamic compressive fatigue properties of polyurethane (PUR) composites made with either unmodified (U-) or polycaprolactone surface-modified (PCL-) 45S5 bioactive glass (BG) particles were compared to a commercially available calcium sulfate and phosphate-based (CaS/P) bone cement at physiologically relevant stresses (5-30 MPa). Fatigue resistance of PCL-BG/polymer composite was superior to that of the U-BG/polymer composite and the CaS/P cement at higher stress levels for each of the fatigue failure criteria, related to modulus, creep, and maximum displacement, and was comparable to human trabecular bone. Steady state creep and damage accumulation occurred during the fatigue life of the PCL-BG/polymer and CaS/P cement, whereas creep of U-BG/polymer primarily occurred at a low number of loading cycles. From crack propagation testing, fracture toughness or resistance to crack growth was significantly higher for the PCL-BG composite than for the other materials. Finally, the fatigue and fracture toughness properties were intermediate between those of trabecular and cortical bone. These findings highlight the potential of PCL-BG/polyurethane composites as weight-bearing bone grafts.


Acta Biomaterialia | 2015

To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity?

Mathilde Granke; Quentin Grimal; William J. Parnell; Kay Raum; Alf Gerisch; Françoise Peyrin; Amena Saïed; Pascal Laugier

An evidence gap exists in fully understanding and reliably modeling the variations in elastic anisotropy that are observed at the millimeter scale in human cortical bone. The porosity (pore volume fraction) is known to account for a large part, but not all, of the elasticity variations. This effect may be modeled by a two-phase micromechanical model consisting of a homogeneous matrix pervaded by cylindrical pores. Although this model has been widely used, it lacks experimental validation. The aim of the present work is to revisit experimental data (elastic coefficients, porosity) previously obtained from 21 cortical bone specimens from the femoral mid-diaphysis of 10 donors and test the validity of the model by proposing a detailed discussion of its hypotheses. This includes investigating to what extent the experimental uncertainties, pore network modeling, and matrix elastic properties influence the models predictions. The results support the validity of the two-phase model of cortical bone which assumes that the essential source of variations of elastic properties at the millimeter-scale is the volume fraction of vascular porosity. We propose that the bulk of the remaining discrepancies between predicted stiffness coefficients and experimental data (RMSE between 6% and 9%) is in part due to experimental errors and part due to small variations of the extravascular matrix properties. More significantly, although most of the models that have been proposed for cortical bone were based on several homogenization steps and a large number of variable parameters, we show that a model with a single parameter, namely the volume fraction of vascular porosity, is a suitable representation for cortical bone. The results could provide a guide to build specimen-specific cortical bone models. This will be of interest to analyze the structure-function relationship in bone and to design bone-mimicking materials.


Bone | 2016

Age-related changes in the fracture resistance of male Fischer F344 rat bone

Sasidhar Uppuganti; Mathilde Granke; Alexander J. Makowski; Mark D. Does; Jeffry S. Nyman

In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue.


Bone | 2016

MRI-derived bound and pore water concentrations as predictors of fracture resistance

Mary Kate Manhard; Sasidhar Uppuganti; Mathilde Granke; Daniel F. Gochberg; Jeffry S. Nyman; Mark D. Does

Accurately predicting fracture risk in the clinic is challenging because the determinants are multi-factorial. A common approach to fracture risk assessment is to combine X-ray-based imaging methods such as dual-energy X-ray absorptiometry (DXA) with an online Fracture Risk Assessment Tool (FRAX) that includes additional risk factors such as age, family history, and prior fracture incidents. This approach still does not adequately diagnose many individuals at risk, especially those with certain diseases like type 2 diabetes. As such, this study investigated bound water and pore water concentrations (Cbw and Cpw) from ultra-short echo time (UTE) magnetic resonance imaging (MRI) as new predictors of fracture risk. Ex vivo cadaveric arms were imaged with UTE MRI as well as with DXA and high-resolution micro-computed tomography (μCT), and imaging measures were compared to both whole-bone structural and material properties as determined by three-point bending tests of the distal-third radius. While DXA-derived areal bone mineral density (aBMD) and μCT-derived volumetric BMD correlated well with structural strength, they moderately correlated with the estimate material strength with gender being a significant covariate for aBMD. MRI-derived measures of Cbw and Cpw had a similar predictive ability of material strength as aBMD but did so independently of gender. In addition, Cbw was the only imaging parameter to significantly correlate with toughness, the energy dissipated during fracture. Notably, the strength of the correlations with the material properties of bone tended to be higher when a larger endosteal region was used to determine Cbw and Cpw. These results indicate that MRI measures of Cbw and Cpw have the ability to probe bone material properties independent of bone structure or subject gender. In particular, toughness is a property of fracture resistance that is not explained by X-ray based methods. Thus, these MRI-derived measures of Cbw and Cpw in cortical bone have the potential to be useful in clinical populations for evaluating fracture risk, especially involving diseases that affect material properties of the bone beyond its strength.


Journal of Biomechanics | 2016

Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone

Mathilde Granke; Alexander J. Makowski; Sasidhar Uppuganti; Jeffry S. Nyman

Changes in the distribution of bone mineralization occurring with aging, disease, or treatment have prompted concerns that alterations in mineralization heterogeneity may affect the fracture resistance of bone. Yet, so far, studies assessing bone from hip fracture cases and fracture-free women have not reached a consensus on how heterogeneity in tissue mineralization relates to skeletal fragility. Owing to the multifactorial nature of toughening mechanisms occurring in bone, we assessed the relative contribution of heterogeneity in mineralization to fracture resistance with respect to age, porosity, and area fraction of osteonal tissue. The latter parameters were extracted from quantitative backscattered electron imaging of human cortical bone sections following R-curve tests of single-edge notched beam specimens to determine fracture toughness properties. Microstructural heterogeneity was determined as the width of the mineral distribution (bulk) and as the sill of the variogram (local). In univariate analyses of measures from 62 human donors (21 to 101 years), local but not bulk heterogeneity as well as pore clustering negatively correlated with fracture toughness properties. With age as covariate, heterogeneity was a significant predictor of crack initiation, though local had a stronger negative contribution than bulk. When considering all potential covariates, age, cortical porosity and area fraction of osteons explained up to 50% of the variance in bone׳s crack initiation toughness. However, including heterogeneity in mineralization did not improve upon this prediction. The findings of the present work stress the necessity to account for porosity and microstructure when evaluating the potential of matrix-related features to affect skeletal fragility.

Collaboration


Dive into the Mathilde Granke's collaboration.

Top Co-Authors

Avatar

Jeffry S. Nyman

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sasidhar Uppuganti

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amena Saïed

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Quentin Grimal

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge