Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathilde H. Lerche is active.

Publication


Featured researches published by Mathilde H. Lerche.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR

Jan Henrik Ardenkjaer-Larsen; Björn Fridlund; Andreas Gram; Georg Hansson; Lennart Hansson; Mathilde H. Lerche; Rolf Servin; Mikkel Thaning; Klaes Golman

A method for obtaining strongly polarized nuclear spins in solution has been developed. The method uses low temperature, high magnetic field, and dynamic nuclear polarization (DNP) to strongly polarize nuclear spins in the solid state. The solid sample is subsequently dissolved rapidly in a suitable solvent to create a solution of molecules with hyperpolarized nuclear spins. The polarization is performed in a DNP polarizer, consisting of a super-conducting magnet (3.35 T) and a liquid-helium cooled sample space. The sample is irradiated with microwaves at ≈94 GHz. Subsequent to polarization, the sample is dissolved by an injection system inside the DNP magnet. The dissolution process effectively preserves the nuclear polarization. The resulting hyperpolarized liquid sample can be transferred to a high-resolution NMR spectrometer, where an enhanced NMR signal can be acquired, or it may be used as an agent for in vivo imaging or spectroscopy. In this article we describe the use of the method on aqueous solutions of [13C]urea. Polarizations of 37% for 13C and 7.8% for 15N, respectively, were obtained after the dissolution. These polarizations correspond to an enhancement of 44,400 for 13C and 23,500 for 15N, respectively, compared with thermal equilibrium at 9.4 T and room temperature. The method can be used generally for signal enhancement and reduction of measurement time in liquid-state NMR and opens up for a variety of in vitro and in vivo applications of DNP-enhanced NMR.


Nature Medicine | 2007

Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy.

Sam E. Day; Mikko I. Kettunen; Ferdia A. Gallagher; De-En Hu; Mathilde H. Lerche; Jan Wolber; Klaes Golman; Jan Henrik Ardenkjaer-Larsen; Kevin M. Brindle

Measurements of early tumor responses to therapy have been shown, in some cases, to predict treatment outcome. We show in lymphoma-bearing mice injected intravenously with hyperpolarized [1-13C]pyruvate that the lactate dehydrogenase–catalyzed flux of 13C label between the carboxyl groups of pyruvate and lactate in the tumor can be measured using 13C magnetic resonance spectroscopy and spectroscopic imaging, and that this flux is inhibited within 24 h of chemotherapy. The reduction in the measured flux after drug treatment and the induction of tumor cell death can be explained by loss of the coenzyme NAD(H) and decreases in concentrations of lactate and enzyme in the tumors. The technique could provide a new way to assess tumor responses to treatment in the clinic.


Nature | 2008

Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate.

Ferdia A. Gallagher; Mikko I. Kettunen; Sam E. Day; De-En Hu; Jan Henrik Ardenkjaer-Larsen; René in ‘t Zandt; Pernille Rose Jensen; Magnus Karlsson; Klaes Golman; Mathilde H. Lerche; Kevin M. Brindle

As alterations in tissue pH underlie many pathological processes, the capability to image tissue pH in the clinic could offer new ways of detecting disease and response to treatment. Dynamic nuclear polarization is an emerging technique for substantially increasing the sensitivity of magnetic resonance imaging experiments. Here we show that tissue pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H13CO3-) and 13CO2 following intravenous injection of hyperpolarized H13CO3-. The technique was demonstrated in a mouse tumour model, which showed that the average tumour interstitial pH was significantly lower than the surrounding tissue. Given that bicarbonate is an endogenous molecule that can be infused in relatively high concentrations into patients, we propose that this technique could be used clinically to image pathological processes that are associated with alterations in tissue pH, such as cancer, ischaemia and inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors.

Ferdia A. Gallagher; Mikko I. Kettunen; De-En Hu; Pernille Rose Jensen; René in ‘t Zandt; Magnus Karlsson; Anna Gisselsson; Sarah K. Nelson; Timothy H. Witney; Sarah E. Bohndiek; Georg Hansson; Torben Peitersen; Mathilde H. Lerche; Kevin M. Brindle

Dynamic nuclear polarization of 13C-labeled cell substrates has been shown to massively increase their sensitivity to detection in NMR experiments. The sensitivity gain is sufficiently large that if these polarized molecules are injected intravenously, their spatial distribution and subsequent conversion into other cell metabolites can be imaged. We have used this method to image the conversion of fumarate to malate in a murine lymphoma tumor in vivo after i.v. injection of hyperpolarized [1,4-13C2]fumarate. In isolated lymphoma cells, the rate of labeled malate production was unaffected by coadministration of succinate, which competes with fumarate for transport into the cell. There was, however, a correlation with the percentage of cells that had lost plasma membrane integrity, suggesting that the production of labeled malate from fumarate is a sensitive marker of cellular necrosis. Twenty-four hours after treating implanted lymphoma tumors with etoposide, at which point there were significant levels of tumor cell necrosis, there was a 2.4-fold increase in hyperpolarized [1,4-13C2]malate production compared with the untreated tumors. Therefore, the formation of hyperpolarized 13C-labeled malate from [1,4-13C2]fumarate appears to be a sensitive marker of tumor cell death in vivo and could be used to detect the early response of tumors to treatment. Given that fumarate is an endogenous molecule, this technique has the potential to be used clinically.


Magnetic Resonance in Medicine | 2008

13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine†

Ferdia A. Gallagher; Mikko I. Kettunen; Sam E. Day; Mathilde H. Lerche; Kevin M. Brindle

Dynamic nuclear polarization (DNP) is an emerging technique for increasing the sensitivity of 13C MR spectroscopy (MRS). [5‐13C1]Glutamine was hyperpolarized using this technique by up to 5%, representing a 6000‐fold increase in sensitivity. The conversion of hyperpolarized glutamine to glutamate by mitochondrial glutaminase was demonstrated using 13C‐MRS measurements in cultured human hepatoma cells (HepG2). These results represent the first step in developing an imaging technique for detecting glutamine metabolism in vivo. Furthermore, since glutamine utilization has been correlated with cell proliferation, the study suggests a new technique for detecting changes in tumor cell proliferation. Magn Reson Med 60:253–257, 2008.


Structure | 1997

Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands

Mathilde H. Lerche; Lene Mølskov Bech; Flemming M. Poulsen

BACKGROUND . Plant nonspecific lipid-transfer proteins (nsLTPs) bind a variety of very different lipids in vitro, including phospholipids, glycolipids, fatty acids and acyl coenzyme As. In this study we have determined the structure of a nsLTP complexed with palmitoyl coenzyme A (PCoA) in order to further our understanding of the structural mechanism of the broad specificity of these proteins and its relation to the function of nsLTPs in vivo. RESULTS . 1H and 13C nuclear magnetic resonance spectroscopy (NMR) have been used to study the complex between a nsLTP isolated from barley seeds (bLTP) and the ligand PCoA. The resonances of 97% of the 1H atoms were assigned for the complexed bLTP and nearly all of the resonances were assigned in the bound PCoA ligand. The palmitoyl chain of the ligand was uniformly 13C-labelled allowing the two ends of the hydrocarbon chain to be assigned. The comparison of a subset of 20 calculated structures to an average structure showed root mean square deviations of 1.89 +/- 0.19 for all C, N, O, P and S atoms of the entire complex and of 0.57 +/- 0.09 for the peptide backbone atoms of the four alpha helices of the complexed bLTP. The four-helix topology of the uncomplexed bLTP is maintained in the complexed form of the protein. The bLTP only binds the hydrophobic parts of PCoA with the rest of the ligand remaining exposed to the solvent. The palmitoyl chain moiety of the ligand is placed in the interior of the protein and bent in a U-shape. This part of the ligand is completely buried within a hydrophobic pocket of the protein. CONCLUSIONS . A comparison of the structures of bLTP in the free and bound forms suggests that bLTP can accommodate long olefinic ligands by expansion of the hydrophobic binding site. This expansion is achieved by a bend of one helix, HA, and by conformational changes in both the C terminus and helix HC. This mode of binding is different from that seen in the structure of maize nsLTP in complex with palmitic acid, where binding of the ligand is not associated with structural changes.


Journal of Biological Chemistry | 2009

Tissue-specific Short Chain Fatty Acid Metabolism and Slow Metabolic Recovery after Ischemia from Hyperpolarized NMR in Vivo

Pernille Rose Jensen; Torben Peitersen; Magnus Karlsson; René in ‘t Zandt; Anna Gisselsson; Georg Hansson; Sebastian Meier; Mathilde H. Lerche

Mechanistic details of mammalian metabolism in vivo and dynamic metabolic changes in intact organisms are difficult to monitor because of the lack of spatial, chemical, or temporal resolution when applying traditional analytical tools. These limitations can be addressed by sensitivity enhancement technology for fast in vivo NMR assays of enzymatic fluxes in tissues of interest. We apply this methodology to characterize organ-specific short chain fatty acid metabolism and the changes of carnitine and coenzyme A pools in ischemia reperfusion. This is achieved by assaying acetyl-CoA synthetase and acetyl-carnitine transferase catalyzed transformations in vivo. The fast and predominant flux of acetate and propionate signal into acyl-carnitine pools shows the efficient buffering of free CoA levels. Sizeable acetyl-carnitine formation from exogenous acetate is even found in liver, where acetyl-CoA synthetase and acetyl-carnitine transferase activities have been assumed sequestered in different compartments. In vivo assays of altered acetate metabolism were applied to characterize pathological changes of acetate metabolism upon ischemia. Coenzyme pools in ischemic skeletal muscle are reduced in vivo even 1 h after disturbing muscle perfusion. Impaired mitochondrial metabolism and slow restoration of free CoA are corroborated by assays employing fumarate to show persistently reduced tricarboxylic acid (TCA) cycle activity upon ischemia. In the same animal model, anaerobic metabolism of pyruvate and tissue perfusion normalize faster than mitochondrial bioenergetics.


International Journal of Cancer | 2010

Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate

Magnus Karlsson; Pernille Rose Jensen; René in ‘t Zandt; Anna Gisselsson; Georg Hansson; Jens Ø. Duus; Sebastian Meier; Mathilde H. Lerche

Powerful analytical tools are vital for characterizing the complex molecular changes underlying oncogenesis and cancer treatment. This is particularly true, if information is to be collected in vivo by noninvasive approaches. In the recent past, hyperpolarized 13C magnetic resonance (MR) spectroscopy has been employed to quickly collect detailed spectral information on the chemical fate of tracer molecules in different tissues at high sensitivity. Here, we report a preclinical study showing that α‐ketoisocaproic acid (KIC) can be used to assess molecular signatures of tumors with hyperpolarized MR spectroscopy. KIC is metabolized to leucine by the enzyme branched chain amino acid transferase (BCAT), which is found upregulated in some tumors. BCAT is a putative marker for metastasis and a target of the proto‐oncogene c‐myc. Very different fluxes through the BCAT‐catalyzed reaction can be detected for murine lymphoma (EL4) and rat mammary adenocarcinoma (R3230AC) tumors in vivo. EL4 tumors show a more than 7‐fold higher hyperpolarized 13C leucine signal relative to the surrounding healthy tissue. In R3230AC tumor on the other hand branched chain amino acid metabolism is not enhanced relative to surrounding tissues. The distinct molecular signatures of branched chain amino acid metabolism in EL4 and R3230AC tumors correlate well with ex vivo assays of BCAT activity.


Journal of Biological Chemistry | 2014

Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes

Caspar Christensen; Magnus Karlsson; Jakob R. Winther; Pernille Rose Jensen; Mathilde H. Lerche

Background: Free cytosolic [NAD+]/[NADH] ratio maintains cellular redox homeostasis and is a cellular metabolic readout. Results: Pyruvate/lactate ratios show distinct metabolic phenotypes and are used to derive free cytosolic [NAD+]/[NADH] ratios. Conclusion: Determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose is applicable to a wide selection of cell types. Significance: This metabolic phenotyping may be a crucial tool to understand pathologies, and to diagnose and measure effects of therapies. Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD+]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD+]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.


Magnetic Resonance in Medicine | 2011

Detection of tumor glutamate metabolism in vivo using 13C magnetic resonance spectroscopy and hyperpolarized [1-13C]glutamate

Ferdia A. Gallagher; Mikko I. Kettunen; Sam E. Day; De-En Hu; Magnus Karlsson; Anna Gisselsson; Mathilde H. Lerche; Kevin M. Brindle

Dynamic nuclear polarization can be used to increase the sensitivity of solution state 13C magnetic resonance spectroscopy by four orders of magnitude. We show here that [1‐13C]glutamate can be polarized to 28%, representing a 35,000‐fold increase in its sensitivity to detection at 9.4 T and 37°C. The metabolism of hyperpolarized glutamate to α‐ketoglutarate, catalyzed by the enzyme alanine transaminase, was detected in vitro in human hepatoma cells (HepG2). Incubation of the cells with sodium pyruvate increased the level of the hyperpolarized label in the α‐ketoglutarate pool, with an associated increase in the apparent rate constant describing flux of hyperpolarized 13C label between glutamate and α‐ketoglutarate. The metabolism of hyperpolarized glutamate was observed in vivo following coadministration of pyruvate in a murine lymphoma model. This represents a new method to probe glutamate metabolism and citric acid cycle activity in vivo; as glutamate is an endogenous molecule, it has the potential to be used in the clinic. Magn Reson Med, 2011.

Collaboration


Dive into the Mathilde H. Lerche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Tedoldi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge