Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathilde Richard is active.

Publication


Featured researches published by Mathilde Richard.


Nature | 2013

Limited airborne transmission of H7N9 influenza A virus between ferrets

Mathilde Richard; Eefje J. A. Schrauwen; Miranda de Graaf; Theo M. Bestebroer; Monique I. Spronken; Sander van Boheemen; Dennis de Meulder; Pascal Lexmond; Martin Linster; Sander Herfst; Derek J. Smith; Judith M. A. van den Brand; David F. Burke; Thijs Kuiken; Albert D. M. E. Osterhaus; Ron A. M. Fouchier

Wild waterfowl form the main reservoir of influenza A viruses, from which transmission occurs directly or indirectly to various secondary hosts, including humans. Direct avian-to-human transmission has been observed for viruses of subtypes A(H5N1), A(H7N2), A(H7N3), A(H7N7), A(H9N2) and A(H10N7) upon human exposure to poultry, but a lack of sustained human-to-human transmission has prevented these viruses from causing new pandemics. Recently, avian A(H7N9) viruses were transmitted to humans, causing severe respiratory disease and deaths in China. Because transmission via respiratory droplets and aerosols (hereafter referred to as airborne transmission) is the main route for efficient transmission between humans, it is important to gain an insight into airborne transmission of the A(H7N9) virus. Here we show that although the A/Anhui/1/2013 A(H7N9) virus harbours determinants associated with human adaptation and transmissibility between mammals, its airborne transmissibility in ferrets is limited, and it is intermediate between that of typical human and avian influenza viruses. Multiple A(H7N9) virus genetic variants were transmitted. Upon ferret passage, variants with higher avian receptor binding, higher pH of fusion, and lower thermostability were selected, potentially resulting in reduced transmissibility. This A(H7N9) virus outbreak highlights the need for increased understanding of the determinants of efficient airborne transmission of avian influenza viruses between mammals.


One Health | 2015

One health, multiple challenges : The inter-species transmission of influenza A virus

Kirsty R. Short; Mathilde Richard; Josanne H. Verhagen; Debby van Riel; Eefje J. A. Schrauwen; Judith M. A. van den Brand; Benjamin Mänz; Rogier Bodewes; Sander Herfst

Influenza A viruses are amongst the most challenging viruses that threaten both human and animal health. Influenza A viruses are unique in many ways. Firstly, they are unique in the diversity of host species that they infect. This includes waterfowl (the original reservoir), terrestrial and aquatic poultry, swine, humans, horses, dog, cats, whales, seals and several other mammalian species. Secondly, they are unique in their capacity to evolve and adapt, following crossing the species barrier, in order to replicate and spread to other individuals within the new species. Finally, they are unique in the frequency of inter-species transmission events that occur. Indeed, the consequences of novel influenza virus strain in an immunologically naïve population can be devastating. The problems that influenza A viruses present for human and animal health are numerous. For example, influenza A viruses in humans represent a major economic and disease burden, whilst the poultry industry has suffered colossal damage due to repeated outbreaks of highly pathogenic avian influenza viruses. This review aims to provide a comprehensive overview of influenza A viruses by shedding light on interspecies virus transmission and summarising the current knowledge regarding how influenza viruses can adapt to a new host.


PLOS ONE | 2015

Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets.

Mathilde Richard; Sander Herfst; Judith M. A. van den Brand; Pascal Lexmond; Theo M. Bestebroer; Marion Koopmans; Thijs Kuiken; Ron A. M. Fouchier

Highly pathogenic avian influenza (HPAI) H5N8 viruses that emerged in poultry in East Asia spread to Europe and North America by late 2014. Here we show that the European HPAI H5N8 viruses differ from the Korean and Japanese HPAI H5N8 viruses by several amino acids and that a Dutch HPAI H5N8 virus had low virulence and was not transmitted via the airborne route in ferrets. The virus did not cross-react with sera raised against pre-pandemic H5 vaccine strains. This data is useful for public health risk assessments.


Frontiers in Microbiology | 2014

Influenza virus and endothelial cells: a species specific relationship

Kirsty R. Short; Edwin J.B. Veldhuis Kroeze; Leslie A. Reperant; Mathilde Richard; Thijs Kuiken

Influenza A virus (IAV) infection is an important cause of respiratory disease in humans. The original reservoirs of IAV are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target of infection. However, influenza virus can spread from wild bird species to terrestrial poultry. Here, the virus can evolve into highly pathogenic avian influenza (HPAI). Part of this evolution involves increased viral tropism for endothelial cells. HPAI virus infections not only cause severe disease in chickens and other terrestrial poultry species but can also spread to humans and back to wild bird populations. Here, we review the role of the endothelium in the pathogenesis of influenza virus infection in wild birds, terrestrial poultry and humans with a particular focus on HPAI viruses. We demonstrate that whilst the endothelium is an important target of virus infection in terrestrial poultry and some wild bird species, in humans the endothelium is more important in controlling the local inflammatory milieu. Thus, the endothelium plays an important, but species-specific, role in the pathogenesis of influenza virus infection.


Fems Microbiology Reviews | 2016

Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential

Mathilde Richard; Ron A. M. Fouchier

Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks.


European Respiratory Journal | 2016

Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions

Kirsty R. Short; Jennifer Kasper; Stijn van der Aa; Arno C. Andeweg; Fatiha Zaaraoui-Boutahar; Marco Goeijenbier; Mathilde Richard; Susanne Herold; Christin Becker; Dana P. Scott; Ronald W. A. L. Limpens; Abraham J. Koster; Montserrat Bárcena; Ron A. M. Fouchier; Charles James Kirkpatrick; Thijs Kuiken

A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial–endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear. Here, we used an in vitro co-culture model to understand how IAV damages the pulmonary epithelial–endothelial barrier. Human epithelial cells were seeded on the upper half of a transwell membrane while human endothelial cells were seeded on the lower half. These cells were then grown in co-culture and IAV was added to the upper chamber. We showed that the addition of IAV (H1N1 and H5N1 subtypes) resulted in significant barrier damage. Interestingly, we found that, while endothelial cells mounted a pro-inflammatory/pro-coagulant response to a viral infection in the adjacent epithelial cells, damage to the alveolar epithelial–endothelial barrier occurred independently of endothelial cells. Rather, barrier damage was associated with disruption of tight junctions amongst epithelial cells, and specifically with loss of tight junction protein claudin-4. Taken together, these data suggest that maintaining epithelial cell integrity is key in reducing pulmonary oedema during IAV infection. Influenza A virus damages tight junctions, and specifically claudin-4, of respiratory epithelial cells http://ow.ly/UyGD5


Journal of Virology | 2016

Amino acid substitutions that affect receptor binding and stability of the hemagglutinin of influenza A/H7N9 virus

Eefje J. A. Schrauwen; Mathilde Richard; David F. Burke; Sander Herfst; Ron A. M. Fouchier

ABSTRACT Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission.


Journal of Virology | 2016

Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells

Benjamin Mänz; Miranda de Graaf; Ramona Mögling; Mathilde Richard; Theo M. Bestebroer; Ron A. M. Fouchier

ABSTRACT A strong restriction of the avian influenza A virus polymerase in mammalian cells generally limits viral host-range switching. Although substitutions like E627K in the PB2 polymerase subunit can facilitate polymerase activity to allow replication in mammals, many human H5N1 and H7N9 viruses lack this adaptive substitution. Here, several previously unknown, naturally occurring, adaptive substitutions in PB2 were identified by bioinformatics, and their enhancing activity was verified using in vitro assays. Adaptive substitutions enhanced polymerase activity and virus replication in mammalian cells for avian H5N1 and H7N9 viruses but not for a partially human-adapted H5N1 virus. Adaptive substitutions toward basic amino acids were frequent and were mostly clustered in a putative RNA exit channel in a polymerase crystal structure. Phylogenetic analysis demonstrated divergent dependency of influenza viruses on adaptive substitutions. The novel adaptive substitutions found in this study increase basic understanding of influenza virus host adaptation and will help in surveillance efforts. IMPORTANCE Influenza viruses from birds jump the species barrier into humans relatively frequently. Such influenza virus zoonoses may pose public health risks if the virus adapts to humans and becomes a pandemic threat. Relatively few amino acid substitutions—most notably in the receptor binding site of hemagglutinin and at positions 591 and 627 in the polymerase protein PB2—have been identified in pandemic influenza virus strains as determinants of host adaptation, to facilitate efficient virus replication and transmission in humans. Here, we show that substantial numbers of amino acid substitutions are functionally compensating for the lack of the above-mentioned mutations in PB2 and could facilitate influenza virus emergence in humans.


Scientific Reports | 2016

Subtype-specific structural constraints in the evolution of influenza A virus hemagglutinin genes.

Alexander P. Gultyaev; Monique I. Spronken; Mathilde Richard; Eefje J. A. Schrauwen; René C. L. Olsthoorn; Ron A. M. Fouchier

The influenza A virus genome consists of eight RNA segments. RNA structures within these segments and complementary (cRNA) and protein-coding mRNAs may play a role in virus replication. Here, conserved putative secondary structures that impose significant evolutionary constraints on the gene segment encoding the surface glycoprotein hemagglutinin (HA) were investigated using available sequence data on tens of thousands of virus strains. Structural constraints were identified by analysis of covariations of nucleotides suggested to be paired by structure prediction algorithms. The significance of covariations was estimated by mutual information calculations and tracing multiple covariation events during virus evolution. Covariation patterns demonstrated that structured domains in HA RNAs were mostly subtype-specific, whereas some structures were conserved in several subtypes. The influence of RNA folding on virus replication was studied by plaque assays of mutant viruses with disrupted structures. The results suggest that over the whole length of the HA segment there are local structured domains which contribute to the virus fitness but individually are not essential for the virus. Existence of subtype-specific structured regions in the segments of the influenza A virus genome is apparently an important factor in virus evolution and reassortment of its genes.


PLOS ONE | 2016

Influenza A (H10N7) Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets

Judith M. A. van den Brand; Peter Wohlsein; Sander Herfst; Rogier Bodewes; Vanessa M. Pfankuche; Marco van de Bildt; Frauke Seehusen; Christina Puff; Mathilde Richard; Ursula Siebert; Kristina Lehnert; Theo M. Bestebroer; Pascal Lexmond; Ron A. M. Fouchier; Ellen Prenger-Berninghoff; Werner Herbst; Marion Koopmans; Albert D. M. E. Osterhaus; Thijs Kuiken; Wolfgang Baumgärtner

Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7) in harbor seals (Phoca vitulina). This epidemic caused high mortality in seals along the north-west coast of Europe and represented a potential risk for human health. To characterize the spectrum of lesions and to identify the target cells and viral distribution, findings in 16 harbor seals spontaneously infected with Seal/H10N7 are described. The seals had respiratory tract inflammation extending from the nasal cavity to bronchi associated with intralesional virus antigen in respiratory epithelial cells. Virus infection was restricted to the respiratory tract. The fatal outcome of the viral infection in seals was most likely caused by secondary bacterial infections. To investigate the pathogenic potential of H10N7 infection for humans, we inoculated the seal virus intratracheally into six ferrets and performed pathological and virological analyses at 3 and 7 days post inoculation. These experimentally inoculated ferrets displayed mild clinical signs, virus excretion from the pharynx and respiratory tract inflammation extending from bronchi to alveoli that was associated with virus antigen expression exclusively in the respiratory epithelium. Virus was isolated only from the respiratory tract. In conclusion, Seal/H10N7 infection in naturally infected harbor seals and experimentally infected ferrets shows that respiratory epithelial cells are the permissive cells for viral replication. Fatal outcome in seals was caused by secondary bacterial pneumonia similar to that in fatal human cases during influenza pandemics. Productive infection of ferrets indicates that seal/H10N7 may possess a zoonotic potential. This outbreak of LPAI from wild birds to seals demonstrates the risk of such occasions for mammals and thus humans.

Collaboration


Dive into the Mathilde Richard's collaboration.

Top Co-Authors

Avatar

Ron A. M. Fouchier

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Sander Herfst

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Thijs Kuiken

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theo M. Bestebroer

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Pascal Lexmond

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monique I. Spronken

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Dennis de Meulder

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge