Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mathuros Ruchirawat is active.

Publication


Featured researches published by Mathuros Ruchirawat.


Critical Reviews in Toxicology | 2006

IPCS Framework for Analyzing the Relevance of a Noncancer Mode of Action for Humans

Alan R. Boobis; John E. Doe; Barbara Heinrich-Hirsch; M. E. (Bette) Meek; Sharon Munn; Mathuros Ruchirawat; Josef Schlatter; Jennifer Seed; Carolyn Vickers

Structured frameworks are extremely useful in promoting transparent, harmonized approaches to the risk assessment of chemicals. One area where this has been particularly successful is in the analysis of modes of action (MOAs) for chemical carcinogens in experimental animals and their relevance to humans. The International Programme on Chemical Safety (IPCS) recently published an updated version of its MOA framework in animals to address human relevance (cancer human relevance framework, or HRF). This work has now been extended to noncancer effects, with the eventual objective of harmonizing framework approaches to both cancer and noncancer endpoints. As in the cancer HRF, the first step is to determine whether the weight of evidence based on experimental observations is sufficient to establish a hypothesized MOA. This comprises a series of key events causally related to the toxic effect, identified using an approach based on the Bradford Hill criteria. These events are then compared qualitatively and, next, quantitatively between experimental animals and humans. The output of the analysis is a clear statement of conclusions, together with the confidence, analysis, and implications of the findings. This framework provides a means of ensuring a transparent evaluation of the data, identification of key data gaps and of information that would be of value in the further risk assessment of the compound, such as on dose–response relationships, and recognition of potentially susceptible subgroups, for example, based on life-stage considerations.


Biochimica et Biophysica Acta | 1997

Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection

Peter R. C. Gascoyne; Ronald Pethig; Jutamaad Satayavivad; Frederick F. Becker; Mathuros Ruchirawat

The dielectric properties of normal erythrocytes were compared to those of cells infected with the malarial parasite Plasmodium falciparum. Normal cells provided stable electrorotation spectra which, when analyzed by a single-shelled oblate spheroid dielectric model, gave a specific capacitance value of 12 +/- 1.2 mF/m2 for the plasma membrane, a cytoplasmic permittivity of 57 +/- 5.4 and a cytoplasmic conductivity of 0.52 +/- 0.05 S/m. By contrast, parasitized cells exhibited electrorotation spectra with a time-dependency that suggested significant net ion outflux via the plasma membrane and it was not possible to derive reliable cell parameter values in this case. To overcome this problem, cell membrane dielectric properties were instead determined from dielectrophoretic crossover frequency measurements made as a function of the cell suspending medium conductivity. The crossover frequency for normal cells depended linearly on the suspension conductivity above 20 mS/m and analysis according to the single-shelled oblate spheroid dielectric model yielded values of 11.8 mF/m2 and 271 S/m2, respectively, for the specific capacitance and conductance of the plasma membrane. Unexpectedly, the crossover frequency characteristics of parasitized cells at high suspending medium conductivities were non-linear. This effect was analyzed in terms of possible dependencies of the cell membrane capacitance, conductance or shape on the suspension medium conductivity, and we concluded that variations in the membrane conductance were most likely responsible for the observed non-linearity. According to this model, parasitized cells had a specific membrane capacitance of 9 +/- 2 mF/m2 and a specific membrane conductance of 1130 S/m2 that increased with increasing cell suspending medium conductivity. Such conductivity changes in parasitized cells are discussed in terms of previously observed parasite-associated membrane pores. Finally, we conclude that the large differences between the dielectrophoretic crossover characteristics of normal and parasitized cells should allow straightforward sorting of these cell types by dielectrophoretic methods.


Science of The Total Environment | 2002

Exposure to genotoxins present in ambient air in Bangkok, Thailand--particle associated polycyclic aromatic hydrocarbons and biomarkers.

Mathuros Ruchirawat; Chulabhorn Mahidol; Chanthana Tangjarukij; Sittisak Pui-ock; Ole Møller Jensen; Ormrat Kampeerawipakorn; Jantamas Tuntaviroon; Auratai Aramphongphan; Herman Autrup

Exposure to genotoxic compounds in ambient air has been studied in Bangkok, Thailand, by analysis of polycyclic aromatic hydrocarbons (PAHs) associated with particles and using different biomarkers of exposure. Eighty-nine male, non-smoking Royal Thai police officers were investigated. The police officers were divided into a high exposure group (traffic police) and low exposure (office duty). Particulate matter was collected using personal pumps (2 l/min) and the eight carcinogenic PAHs were analysed by standard procedures. The traffic police was exposed to a 20-fold higher level of total PAHs than office police (74.25 ng/m3 vs. 3.11; P= 0.001). A two-fold variation was observed between the different police stations. The major PAHs in all groups was benzo[g,h,l]pyrelene. Large inter-individual differences in biomarker levels were observed, but the level of all markers was statistically significantly higher in the traffic police group than in the office group. The level of 1-hydroxypyrene (1-HOP) was 0.181+/-0.078 (range 0.071-0.393) micromol/mol creatinine in the traffic group and 0.173+/-0.151 (P = 0.044) in the office group. The bulky carcinogen DNA-adduct level, determined by P32-post-labelling, was 1.6+/-0.9 (range 0.4-4.3) adducts/10(8) nucleotides in the traffic group and 1.2+/-1.0 (0.2-4.9) in the office group (P = 0.029; Mann-Whitney U-test). The serum PAH-albumin adduct level was 1.76 (0.51-3.07) fmol adducts/microg albumin in the traffic group and 1.35+/-0.77 (0.11-3.45; P = 0.001) in the office group. Lower biomarker levels were observed during the period when the traffic police officers were wearing a simple facemask, indicating that these masks protect against particle-associated PAHs. No statistically significant correlations were observed between biomarker levels and the level of individual PAHs or total PAH. Our data show, that people in Bangkok, who spend most of the day outside air-conditioned offices, are exposed to high levels of genotoxic PAHs. However, for people who spend their working day in offices, the exposure is similar to people living in other metropolitan areas.


Biochimica et Biophysica Acta | 2002

Detection of cellular responses to toxicants by dielectrophoresis.

Kanatip Ratanachoo; Peter R. C. Gascoyne; Mathuros Ruchirawat

The dielectrophoretic (DEP) crossover method has been applied to the detection of cell responses to toxicants. Time and dose responses of the human cultured leukemia (HL-60) line were measured for paraquat, styrene oxide (SO), N-nitroso-N-methylurea (NMU) and puromycin. These toxicants were chosen because of their different predominant mechanisms of action, namely membrane free radical attack, simultaneous membrane and nucleic acid attack, nucleic acid alkylation, and protein synthesis inhibition, respectively. For all treatments, the specific membrane capacitance (C(mem)) of the cells decreased while the specific membrane conductance (G(mem)) increased in dose- and time-dependent manners. The DEP responses correlated sensitively with alterations in cell surface morphology, especially folds, microvilli, and blebs, observed by scanning electron microscopy. The DEP method was more sensitive to agents that had a direct action on the membrane than to agents for which membrane alterations were secondary. The responses to paraquat and SO, which directly damaged the cell membrane, could be detected 15 min after exposure, while those for puromycin and NMU, which acted on intracellular targets, could be detected after 30 min. The detection times and dose sensitivity results showed that the DEP method is much faster and more sensitive than conventional cell and higher organism viability testing techniques. The feasibility of producing small instruments for toxicity detection and screening based on cellular dielectric responses is discussed.


Environmental Health | 2012

Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line

Ponpat Intarasunanont; Panida Navasumrit; Somchamai Waraprasit; Krittinee Chaisatra; William A. Suk; Chulabhorn Mahidol; Mathuros Ruchirawat

BackgroundAccumulating evidence indicates that in utero exposure to arsenic is associated with congenital defects and long-term disease consequences including cancers. Recent studies suggest that arsenic carcinogenesis results from epigenetic changes, particularly in DNA methylation. This study aimed to investigate DNA methylation changes as a result of arsenic exposure in utero and in vitro.MethodsFor the exposure in utero study, a total of seventy-one newborns (fifty-five arsenic-exposed and sixteen unexposed newborns) were recruited. Arsenic concentrations in the drinking water were measured, and exposure in newborns was assessed by measurement of arsenic concentrations in cord blood, nails and hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the in vitro study, human lymphoblasts were treated with arsenite at 0-100 μM for two, four and eight hours (short-term) and at 0, 0.5 and 1.0 μM for eight-weeks period (long-term). DNA methylation was analyzed in cord blood lymphocytes and lymphoblasts treated with arsenite in vitro. Global DNA methylation was determined as LINE-1 methylation using combined bisulfite restriction analysis ( COBRA) and total 5-methyldeoxycytidine (5MedC) content which was determined by HPLC-MS/MS. Methylation of p53 was determined at the promoter region using methylation-specific restriction endonuclease digestion with MspI and HpaII.ResultsResults showed that arsenic-exposed newborns had significantly higher levels of arsenic in cord blood, fingernails, toenails and hair than those of the unexposed subjects and a slight increase in promoter methylation of p53 in cord blood lymphocytes which significantly correlated with arsenic accumulation in nails (p < 0.05) was observed, while LINE-1 methylation was unchanged. Short-term in vitro arsenite treatment in lymphoblastoid cells clearly demonstrated a significant global hypomethylation, determined as reduction in LINE-1 methylation and total 5-MedC content, and p53 hypermethylation (p < 0.05). However, a slight LINE-1 hypomethylation and transient p53 promoter hypermethylation were observed following long-term in vitro treatment.ConclusionsThis study provides an important finding that in utero arsenic exposure affects DNA methylation, particularly at the p53 promoter region, which may be linked to the mechanism of arsenic carcinogenesis and the observed increased incidence of cancer later in life.


Environmental Health Perspectives | 2015

E-Waste and Harm to Vulnerable Populations: A Growing Global Problem.

Michelle Heacock; Carol Bain Kelly; Kwadwo Ansong Asante; Linda S. Birnbaum; Åke Lennart Bergman; Marie-Noel Brune; Irena Buka; David O. Carpenter; Aimin Chen; Xia Huo; Mostafa Kamel; Philip J. Landrigan; Federico Magalini; Fernando Díaz-Barriga; Maria Neira; Magdy Omar; Antonio Pascale; Mathuros Ruchirawat; Leith Sly; Peter D. Sly; Martin van den Berg; William A. Suk

Background: Electronic waste (e-waste) is produced in staggering quantities, estimated globally to be 41.8 million tonnes in 2014. Informal e-waste recycling is a source of much-needed income in many low- to middle-income countries. However, its handling and disposal in underdeveloped countries is often unsafe and leads to contaminated environments. Rudimentary and uncontrolled processing methods often result in substantial harmful chemical exposures among vulnerable populations, including women and children. E-waste hazards have not yet received the attention they deserve in research and public health agendas. Objectives: We provide an overview of the scale and health risks. We review international efforts concerned with environmental hazards, especially affecting children, as a preface to presenting next steps in addressing health issues stemming from the global e-waste problem. Discussion: The e-waste problem has been building for decades. Increased observation of adverse health effects from e-waste sites calls for protecting human health and the environment from e-waste contamination. Even if e-waste exposure intervention and prevention efforts are implemented, legacy contamination will remain, necessitating increased awareness of e-waste as a major environmental health threat. Conclusion: Global, national, and local levels efforts must aim to create safe recycling operations that consider broad security issues for people who rely on e-waste processing for survival. Paramount to these efforts is reducing pregnant women and children’s e-waste exposures to mitigate harmful health effects. With human environmental health in mind, novel dismantling methods and remediation technologies and intervention practices are needed to protect communities. Citation: Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman AL, Bruné MN, Buka I, Carpenter DO, Chen A, Huo X, Kamel M, Landrigan PJ, Magalini F, Diaz-Barriga F, Neira M, Omar M, Pascale A, Ruchirawat M, Sly L, Sly PD, Van den Berg M, Suk WA. 2016. E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect 124:550–555; http://dx.doi.org/10.1289/ehp.1509699


International Journal of Hygiene and Environmental Health | 2004

Use of biomarkers to characterize functions of polymorphic DNA repair genotypes.

William W. Au; Panida Navasumrit; Mathuros Ruchirawat

Inheritance of variant DNA repair genes is believed to influence individual susceptibility to the development of environmental cancer. However, the validity of the belief is dependent upon understanding the functions of the variant genes. Consequently, a variety of studies have been conducted to investigate the functions of variant DNA repair genes, e.g. using biomarkers. These studies on several representative polymorphic DNA repair genes are reviewed in this report. From a general overview, it appears that the biomarker investigations did not provide consistent observations. However, from a more careful evaluation, it is clear that the inconsistencies are probably caused by the use of populations and biomarkers that are not appropriate for investigating the repair activities of the genes. For example, the use of cigarette smokers and patients may not generate precise information for this type of investigations because these conditions can modify the functions of the investigated genes. Thus, the use of healthy non-smokers would be more appropriate. Other problems with these studies includes the small sample size used and the fact that some of the biomarkers used, such as sister chromatid exchanges, are not appropriate because the mechanisms for formation of the biomarkers and their biological significance are unknown. Nevertheless, the following conclusions can be derived from the review of the various biomarker studies that have been published. XRCC1 194Trp, OGG1 326Cys and APE1 148Glu probably have limited alterations in repair activities compared to the wild-type genotypes. XRCC1 399Gln and XRCC3 241Met are deficient in the repair of X-ray-, but not UV-light-induced chromosome aberrations, therefore the variant genes are defective in base excision repair. XPD 312Asn and XPD 751Gln are deficient in the repair of UV-light- but not X-ray-induced chromosome aberrations, therefore they are defective in nucleotide excision repair.


International Journal of Hygiene and Environmental Health | 2014

Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles.

Udomratana Vattanasit; Panida Navasumrit; Man Bahadur Khadka; Jantamas Kanitwithayanun; Jeerawan Promvijit; Herman Autrup; Mathuros Ruchirawat

Particulate pollution is a major public health concern because epidemiological studies have demonstrated that exposure to particles is associated with respiratory diseases and lung cancer. Diesel exhaust particles (DEP), which is classified as a human carcinogen (IARC, 2012), are considered a major contributor to traffic-related particulate matter (PM) in urban areas. DEP consists of various compounds, including PAHs and metals which are the principal components that contribute to the toxicity of PM. The present study aimed to investigate effects of PM on induction of oxidative DNA damage and inflammation by using lymphocytes in vitro and in human exposed to PM in the environment. Human lymphoblasts (RPMI 1788) were treated with DEP (SRM 2975) at various concentrations (25-100 μg/ml) to compare the extent of responses with alveolar epithelial cells (A549). ROS generation was determined in each cell cycle phase of DEP-treated cells in order to investigate the influence of the cell cycle stage on induction of oxidative stress. The oxidative DNA damage was determined by measurement of 8-hydroxy-deoxyguanosine (8-OHdG) whereas the inflammatory responses were determined by mRNA expression of interleukin-6 and -8 (IL-6 and IL-8), Clara cell protein (CC16), and lung surfactant protein-A (SP-A). The results showed that RPMI 1788 and A549 cells had a similar pattern of dose-dependent responses to DEP in terms of particle uptake, ROS generation with highest level found in G2/M phase, 8-OHdG formation, and induction of IL-6 and IL-8 expression. The human study was conducted in 51 healthy subjects residing in traffic-congested areas. The effects of exposure to PM2.5 and particle-bound PAHs and toxic metals on the levels of 8-OHdG in lymphocyte DNA, IL-8 expression in lymphocytes, and serum CC16 were evaluated. 8-OHdG levels correlated with the exposure levels of PM2.5 (P<0.01) and PAHs (P<0.05), but this was not the case with IL-8. Serum CC16 showed significantly negative correlations with B[a]P equivalent (P<0.05) levels, but positive correlation with Pb (P<0.05). In conclusion, a similar pattern of the dose-dependent responses to DEP in the lymphoblasts and lung cells suggests that circulating lymphocytes could be used as a surrogate for assessing PM-induced oxidative DNA damage and inflammatory responses in the lung. Human exposure to PM leads to oxidative DNA damage whereas PM-induced inflammation was not conclusive and should be further investigated.


Chemico-Biological Interactions | 2010

Exposure to benzene in various susceptible populations: co-exposures to 1,3-butadiene and PAHs and implications for carcinogenic risk.

Mathuros Ruchirawat; Panida Navasumrit; Daam Settachan

Exposure to benzene in human populations can occur in various work-related settings in which benzene is used or produced, or from traffic emissions resulting from incomplete combustion of fossil fuel, or from other sources. Two scenarios of benzene exposure were studied in 4 susceptible groups in Thailand. The first scenario is work-related exposures primarily to benzene, with the study subjects consisting of petrochemical laboratory workers and gasoline service station attendants, who are exposed at levels of 78.32 and 360.84 microg/m(3), respectively. The second scenario is traffic-related exposure and exposure to incense smoke, where co-exposures to other pollutants occurs, with the study groups consisting of school children attending schools in the city center and exposed to traffic emissions, and temple workers exposed to incense smoke. The individual benzene exposure levels were approximately 19.38 microg/m(3) in city school children and 45.90 microg/m(3) in temple workers. Co-exposures to 1,3-butadiene and polycyclic aromatic hydrocarbons (PAHs) generated from the same sources occurred in the second exposure scenario. 8-OHdG, DNA strand breaks and DNA repair capacity were measured as biomarkers of early effects of carcinogenic compound exposure. Petrochemical laboratory workers and gasoline service stations attendants had significantly higher levels of DNA strand breaks and significantly lower DNA repair capacity compared to controls, while gasoline service station attendants also had significantly higher levels of 8-OHdG than controls. City school children had significantly higher levels of PAH-DNA adducts, 8-OHdG, and DNA strand breaks and significantly lower levels of DNA repair capacity compared to rural children. Temple workers also had significantly higher levels of 8-OHdG and DNA strand breaks and significantly lower levels of DNA repair capacity compared to controls. In all of the study groups, the levels of benzene exposure correlated significantly with 8-OHdG levels, DNA strand breaks, and DNA repair capacity. In school children, PAH levels also correlated significantly with 8-OHdG levels, DNA strand breaks and DNA repair capacity. In temple workers, 1,3-butadiene levels correlated significantly with 8-OHdG and DNA strand breaks, but not with DNA repair capacity, while in the school children they did not correlate significantly with 8-OHdG or DNA strand breaks, and correlated marginally significantly with DNA repair capacity (deletions per metaphase). Multivariate regression analysis identified total PAHs concentrations converted to B[a]P equivalents as the only factor significantly affecting 8-OHdG levels, and total PAHs concentrations converted to B[a]P equivalents, as well as 1,3-butadiene concentrations as the factors significantly affecting DNA repair capacity in the school children. PAHs concentration was identified as the factor most significantly affecting DNA strand breaks in temple workers, followed by benzene concentrations, while DNA repair capacity was also significantly influenced by PAHs concentrations.


International Journal of Hygiene and Environmental Health | 2010

Challenge assay: A functional biomarker for exposure-induced DNA repair deficiency and for risk of cancer

William W. Au; Ashok K. Giri; Mathuros Ruchirawat

A variety of biomarkers have been used to monitor exposed populations to determine potential health hazards from their exposure to environmental toxic agents. However, the majority of these biomarkers have been focused onto the identification of biological damage from the exposure. Therefore, there is a need to develop functional biomarkers that can identify exposure-induced functional deficiencies. More importantly, these deficiencies should be positioned along pathways that are responsible for the development of specific diseases. One of such pathways belongs to the extensive and complex DNA-repair machinery. The machinery thus becomes a large target for damage from environmental toxic agents. The hypothesis is that damage to any component of a repair pathway will interfere with the pathway-specific repair activities. Therefore, when cells from exposed populations are challenged with a DNA-damaging agent in vitro, the in vivo exposure-induced repair deficiency will be dramatically amplified and the deficiency will be detectable in a challenge assay as increased chromosome aberrations, micronuclei or un-repaired DNA strand breaks. The challenge assay has been used in different laboratories to show that a variety of exposed populations (with exposure to air pollutants, arsenic, benzene, butadiene, cigarette smoke, incense smoke, lead, mercury, pesticides, uranium or xylene but not to low concentrations of air pollutants or butadiene) expressed abnormal challenge response. The predicted health consequences of some of these studies have also been validated. Therefore, the challenge assay is a useful functional biomarker for population studies. Details of the challenge assay and its application will be presented in this review.

Collaboration


Dive into the Mathuros Ruchirawat's collaboration.

Top Co-Authors

Avatar

Panida Navasumrit

Chulabhorn Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chulabhorn Mahidol

Chulabhorn Research Institute

View shared research outputs
Top Co-Authors

Avatar

William A. Suk

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daam Settachan

Chulabhorn Research Institute

View shared research outputs
Top Co-Authors

Avatar

Philip J. Landrigan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jeerawan Promvijit

Chulabhorn Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jutamaad Satayavivad

Chulabhorn Research Institute

View shared research outputs
Top Co-Authors

Avatar

Potchanee Hunsonti

Chulabhorn Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge