Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matias D. Zurbriggen is active.

Publication


Featured researches published by Matias D. Zurbriggen.


Plant Journal | 2009

Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria

Matias D. Zurbriggen; Néstor Carrillo; Vanesa B. Tognetti; Michael Melzer; Martin Peisker; Bettina Hause; Mohammad-Reza Hajirezaei

Attempted infection of plants by pathogens elicits a complex defensive response. In many non-host and incompatible host interactions it includes the induction of defence-associated genes and a form of localized cell death (LCD), purportedly designed to restrict pathogen advance, collectively known as the hypersensitive response (HR). It is preceded by an oxidative burst, generating reactive oxygen species (ROS) that are proposed to cue subsequent deployment of the HR, although neither the origin nor the precise role played by ROS in the execution of this response are completely understood. We used tobacco plants expressing cyanobacterial flavodoxin to address these questions. Flavodoxin is an electron shuttle present in prokaryotes and algae that, when expressed in chloroplasts, specifically prevents ROS formation in plastids during abiotic stress episodes. Infiltration of tobacco wild-type leaves with high titres of Xanthomonas campestris pv. vesicatoria (Xcv), a non-host pathogen, resulted in ROS accumulation in chloroplasts, followed by the appearance of localized lesions typical of the HR. In contrast, chloroplast ROS build-up and LCD were significantly reduced in Xcv-inoculated plants expressing plastid-targeted flavodoxin. Metabolic routes normally inhibited by pathogens were protected in the transformants, whereas other aspects of the HR, including the induction of defence-associated genes and synthesis of salicylic and jasmonic acid, proceeded as in inoculated wild-type plants. Therefore, ROS generated in chloroplasts during this non-host interaction are essential for the progress of LCD, but do not contribute to the induction of pathogenesis-related genes or other signalling components of the response.


Current Opinion in Biotechnology | 2014

Novel perspectives for the engineering of abiotic stress tolerance in plants.

Julieta Virginia Cabello; Anabella F. Lodeyro; Matias D. Zurbriggen

Adverse environmental conditions pose serious limitations to agricultural production. Classical biotechnological approaches towards increasing abiotic stress tolerance focus on boosting plant endogenous defence mechanisms. However, overexpression of regulatory elements or effectors is usually accompanied by growth handicap and yield penalties due to crosstalk between developmental and stress-response networks. Herein we offer an overview on novel strategies with the potential to overcome these limitations based on the engineering of regulatory systems involved in the fine-tuning of the plant response to environmental hardships, including post-translational modifications, small RNAs, epigenetic control of gene expression and hormonal networks. The development and application of plant synthetic biology tools and approaches will add new functionalities and perspectives to genetic engineering programs for enhancing abiotic stress tolerance.


Nucleic Acids Research | 2013

Multi-chromatic control of mammalian gene expression and signaling

Konrad Müller; Raphael Engesser; Simon Schulz; Thorsten Steinberg; Pascal Tomakidi; Cornelia C. Weber; Roman Ulm; Jens Timmer; Matias D. Zurbriggen; Wilfried Weber

The emergence and future of mammalian synthetic biology depends on technologies for orchestrating and custom tailoring complementary gene expression and signaling processes in a predictable manner. Here, we demonstrate for the first time multi-chromatic expression control in mammalian cells by differentially inducing up to three genes in a single cell culture in response to light of different wavelengths. To this end, we developed an ultraviolet B (UVB)-inducible expression system by designing a UVB-responsive split transcription factor based on the Arabidopsis thaliana UVB receptor UVR8 and the WD40 domain of COP1. The system allowed high (up to 800-fold) UVB-induced gene expression in human, monkey, hamster and mouse cells. Based on a quantitative model, we determined critical system parameters. By combining this UVB-responsive system with blue and red light-inducible gene control technology, we demonstrate multi-chromatic multi-gene control by differentially expressing three genes in a single cell culture in mammalian cells, and we apply this system for the multi-chromatic control of angiogenic signaling processes. This portfolio of optogenetic tools enables the design and implementation of synthetic biological networks showing unmatched spatiotemporal precision for future research and biomedical applications.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin

Vanesa B. Tognetti; Matias D. Zurbriggen; Eligio N. Morandi; María F. Fillat; Estela M. Valle; Mohammad-Reza Hajirezaei; Néstor Carrillo

Iron limitation affects one-third of the cultivable land on Earth and represents a major concern for agriculture. It causes decline of many photosynthetic components, including the Fe-S protein ferredoxin (Fd), involved in essential oxidoreductive pathways of chloroplasts. In cyanobacteria and some algae, Fd down-regulation under Fe deficit is compensated by induction of an isofunctional electron carrier, flavodoxin (Fld), a flavin mononucleotide-containing protein not found in plants. Transgenic tobacco lines expressing a cyanobacterial Fld in chloroplasts were able to grow in Fe-deficient media that severely compromised survival of WT plants. Fld expression did not improve Fe uptake or mobilization, and stressed transformants elicited a normal deficit response, including induction of ferric-chelate reductase and metal transporters. However, the presence of Fld did prevent decrease of several photosynthetic proteins (but not Fd) and partially protected photosynthesis from inactivation. It also preserved the activation state of enzymes depending on the Fd-thioredoxin pathway, which correlated with higher levels of intermediates of carbohydrate metabolism and the Calvin cycle, as well as increased contents of sucrose, glutamate, and other amino acids. These metabolic routes depend, directly or indirectly, on the provision of reduced Fd. The results indicate that Fld could compensate Fd decline during episodes of Fe deficiency by productively interacting with Fd-dependent pathways of the host, providing fresh genetic resources for the design of plants able to survive in Fe-poor lands.


Plant Physiology | 2006

Transgenic Tobacco Plants Overexpressing Chloroplastic Ferredoxin-NADP(H) Reductase Display Normal Rates of Photosynthesis and Increased Tolerance to Oxidative Stress

Ramiro E. Rodriguez; Anabella F. Lodeyro; Hugo O. Poli; Matias D. Zurbriggen; Martin Peisker; Javier F. Palatnik; Vanesa B. Tognetti; Henning Tschiersch; Mohammad-Reza Hajirezaei; Estela M. Valle; Néstor Carrillo

Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants transformed with an antisense version of the FNR gene. To investigate whether accumulation of this flavoprotein over wild-type levels could improve photosynthetic efficiency and growth, we generated transgenic tobacco (Nicotiana tabacum) plants expressing a pea (Pisum sativum) FNR targeted to chloroplasts. The alien product distributed between the thylakoid membranes and the chloroplast stroma. Transformants grown at 150 or 700 μmol quanta m−2 s−1 displayed wild-type phenotypes regardless of FNR content. Thylakoids isolated from plants with a 5-fold FNR increase over the wild type displayed only moderate stimulation (approximately 20%) in the rates of electron transport from water to NADP+. In contrast, when donors of photosystem I were used to drive NADP+ photoreduction, the activity was 3- to 4-fold higher than the wild-type controls. Plants expressing various levels of FNR (from 1- to 3.6-fold over the wild type) failed to show significant differences in CO2 assimilation rates when assayed over a range of light intensities and CO2 concentrations. Transgenic lines exhibited enhanced tolerance to photooxidative damage and redox-cycling herbicides that propagate reactive oxygen species. The results suggest that photosynthetic electron transport has several rate-limiting steps, with FNR catalyzing just one of them.


Plant Signaling & Behavior | 2010

ROS signaling in the hypersensitive response: When, where and what for?

Matias D. Zurbriggen; Néstor Carrillo; Mohammad-Reza Hajirezaei

Plants generally react to the attack of non-host and incompatible host microorganisms by inducing pathogenesis-related (PR) genes and localised cell death (LCD) at the site of infection, a process collectively known as the hypersensitive response (HR). Reactive oxygen species (ROS) are generated in various sub-cellular compartments shortly after pathogen recognition, and proposed to cue subsequent orchestration of the HR. Although apoplast-associated ROS production by plasma membrane NADPH oxidases have been most thoroughly studied, recent observations suggest that ROS are generated in chloroplasts earlier in the response and play a key role in execution of LCD. A model is presented in which the initial outcome of successful pathogen detection is ROS accumulation in plastids, likely mediated by mitogen-activated protein kinases and caused by dysfunction of the photosynthetic electron transport chain. ROS signaling is proposed to spread from plastids to the apoplast, through the activation of NADPH oxidases, and from there to adjacent cells, leading to suicidal death in the region of attempted infection.


Trends in Biotechnology | 2008

Combating stress with flavodoxin: a promising route for crop improvement

Matias D. Zurbriggen; Vanesa B. Tognetti; María F. Fillat; Mohammad-Reza Hajirezaei; Estela M. Valle; Néstor Carrillo

Environmental stresses and iron limitation are the primary causes of crop losses worldwide. Engineering strategies aimed at gaining stress tolerance have focused on overexpression of endogenous genes belonging to molecular networks for stress perception or responses. Based on the typical response of photosynthetic microorganisms to stress, an alternative approach has been recently applied with considerable success. Ferredoxin, a stress-sensitive target, was replaced in tobacco chloroplasts by an isofunctional protein, a cyanobacterial flavodoxin, which is absent in plants. Resulting transgenic lines showed wide-range tolerance to drought, chilling, oxidants, heat and iron starvation. The survival of plants under such adverse conditions would be an enormous agricultural advantage and makes this novel strategy a potentially powerful biotechnological tool for the generation of multiple-tolerant crops in the near future.


ACS Synthetic Biology | 2015

Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish

Hannes M. Beyer; Samuel Juillot; Kathrin Herbst; Sophia L. Samodelov; Konrad Müller; Wolfgang W. A. Schamel; Winfried Römer; Eberhard Schäfer; Ferenc Nagy; Uwe Strähle; Wilfried Weber; Matias D. Zurbriggen

Protein trafficking in and out of the nucleus represents a key step in controlling cell fate and function. Here we report the development of a red light-inducible and far-red light-reversible synthetic system for controlling nuclear localization of proteins in mammalian cells and zebrafish. First, we synthetically reconstructed and validated the red light-dependent Arabidopsis phytochrome B nuclear import mediated by phytochrome-interacting factor 3 in a nonplant environment and support current hypotheses on the import mechanism in planta. On the basis of this principle we next regulated nuclear import and activity of target proteins by the spatiotemporal projection of light patterns. A synthetic transcription factor was translocated into the nucleus of mammalian cells and zebrafish to drive transgene expression. These data demonstrate the first in vivo application of a plant phytochrome-based optogenetic tool in vertebrates and expand the repertoire of available light-regulated molecular devices.


ACS Synthetic Biology | 2014

Optogenetic control of protein kinase activity in mammalian cells.

Sabrina Wend; Hanna J. Wagner; Konrad Müller; Matias D. Zurbriggen; Wilfried Weber; Gerald Radziwill

Light-dependent dimerization is the basis for recently developed noninvasive optogenetic tools. Here we present a novel tool combining optogenetics with the control of protein kinase activity to investigate signal transduction pathways. Mediated by Arabidopsis thaliana photoreceptor cryptochrome 2, we activated the protein kinase C-RAF by blue light-dependent dimerization, allowing for decoupling from upstream signaling events induced by surface receptors. The activation by light is fast, reversible, and not only time but also dose dependent as monitored by phosphorylation of ERK1/2. Additionally, light-activated C-RAF controls serum response factor-mediated gene expression. Light-induced heterodimerization of C-RAF with a kinase-dead mutant of B-RAF demonstrates the enhancing role of B-RAF as a scaffold for C-RAF activity, which leads to the paradoxical activation of C-RAF found in human cancers. This optogenetic tool enables reversible control of protein kinase activity in signal duration and strength. These properties can help to shed light onto downstream signaling processes of protein kinases in living cells.


Iubmb Life | 2007

Stress‐inducible flavodoxin from photosynthetic microorganisms. The mystery of flavodoxin loss from the plant genome

Matias D. Zurbriggen; Vanesa B. Tognetti; Néstor Carrillo

Flavodoxins (Flds) are mobile electron carriers containing flavin mononucleotide as the prosthetic group. They are isofunctional with the ubiquitous electron shuttle ferredoxin (Fd), mediating essentially the same redox processes among a promiscuous lot of donors and acceptors. While Fds are distributed throughout all kingdoms from prokaryotes to animals, Flds are only found in some bacteria and oceanic algae, in which they are induced to replace Fd functions under conditions of iron starvation and environmental stress that cause Fd decline. They thus play a key adaptive role in photosynthetic microorganisms, allowing survival and reproduction under adverse situations. The Fld gene disappeared from the plant genome somewhere between the green algal ancestor and the first terrestrial plants, and the advantages of this adaptive resource were irreversibly lost. However, reintroduction of a cyanobacterial Fld gene in the chloroplasts of transgenic tobacco resulted in remarkably enhanced tolerance to iron starvation and abiotic stress, indicating that the compensatory functions of Fld were still valuable in higher plants. A hypothesis is formulated to explain why Fld, in spite of its proven advantage, was lost from the plant genetic pool. The contention is based on two tenets: (i) iron availability was the major imperative for Fld conservation and adaptive value, and (ii) photosynthetic eukaryotes followed a succession of ecological adaptations, from the open oceans to coastal regions, and from there to the firm land, facing very different scenarios with respect to iron abundance and accessibility. IUBMB Life, 59: 355‐360, 2007

Collaboration


Dive into the Matias D. Zurbriggen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Néstor Carrillo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Timmer

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge