Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matias Ruben Fagiani is active.

Publication


Featured researches published by Matias Ruben Fagiani.


Journal of the American Chemical Society | 2013

Isomer-Selective Detection of Hydrogen-Bond Vibrations in the Protonated Water Hexamer

Nadja Heine; Matias Ruben Fagiani; Mariana Rossi; Torsten Wende; Giel Berden; Volker Blum; Knut R. Asmis

The properties of hydrogen ions in aqueous solution are governed by the ability of water to incorporate ions in a dynamical hydrogen bond network, characterized by a structural variability that has complicated the development of a consistent molecular level description of H(+)(aq). Isolated protonated water clusters, H(+)(H2O)n, serve as finite model systems for H(+)(aq), which are amenable to highly sensitive and selective gas phase spectroscopic techniques. Here, we isolate and assign the infrared (IR) signatures of the Zundel-type and Eigen-type isomers of H(+)(H2O)6, the smallest protonated water cluster for which both of these characteristic binding motifs coexist, down into the terahertz spectral region. We use isomer-selective double-resonance population labeling spectroscopy on messenger-tagged H(+)(H2O)6·H2 complexes from 260 to 3900 cm(-1). Ab initio molecular dynamics calculations qualitatively recover the IR spectra of the two isomers and allow attributing the increased width of IR bands associated with H-bonded moieties to anharmonicities rather than excited state lifetime broadening. Characteristic hydrogen-bond stretching bands are observed below 400 cm(-1).


Science | 2016

Spectroscopic snapshots of the proton-transfer mechanism in water

Conrad T. Wolke; Joseph A. Fournier; Laura C. Dzugan; Matias Ruben Fagiani; Tuguldur T. Odbadrakh; Harald Knorke; Kenneth D. Jordan; Anne B. McCoy; Knut R. Asmis; Mark A. Johnson

A view of acidic proton transport emerges in vibrational spectra of deuterated water clusters bound to a succession of bases. Frame-by-frame view of acidic transport Protons in acidic solution constantly hop from one water molecule to the next. In between the hopping, controversy lingers over the extent to which the proton either sticks largely to one water molecule in an Eigen motif or bridges two of them in a Zundel motif. It has been hard to probe this question directly because the distinguishing vibrational bands in bulk aqueous acid spectra are so broad. Wolke et al. studied deuterated prototypical Eigen clusters, D+(D2O)4, bound to an increasingly basic series of hydrogen bond acceptors (see the Perspective by Xantheas). These clusters displayed sharp bands in their vibrational spectra, highlighting a steadily evolving distortion toward a Zundel-like motif and pointing the way toward further investigations. Science, this issue p. 1131; see also p. 1101 The Grotthuss mechanism explains the anomalously high proton mobility in water as a sequence of proton transfers along a hydrogen-bonded (H-bonded) network. However, the vibrational spectroscopic signatures of this process are masked by the diffuse nature of the key bands in bulk water. Here we report how the much simpler vibrational spectra of cold, composition-selected heavy water clusters, D+(D2O)n, can be exploited to capture clear markers that encode the collective reaction coordinate along the proton-transfer event. By complexing the solvated hydronium “Eigen” cluster [D3O+(D2O)3] with increasingly strong H-bond acceptor molecules (D2, N2, CO, and D2O), we are able to track the frequency of every O-D stretch vibration in the complex as the transferring hydron is incrementally pulled from the central hydronium to a neighboring water molecule.


Angewandte Chemie | 2017

Structure and Fluxionality of B13 + Probed by Infrared Photodissociation Spectroscopy

Matias Ruben Fagiani; Xiaowei Song; Petko Petkov; Sreekanta Debnath; Sandy Gewinner; Wieland Schöllkopf; Thomas Heine; André Fielicke; Knut R. Asmis

We use cryogenic ion vibrational spectroscopy to characterize the structure and fluxionality of the magic number boron cluster B13+ . The infrared photodissociation (IRPD) spectrum of the D2 -tagged all-11 B isotopologue of B13+ is reported in the spectral range from 435 to 1790 cm-1 and unambiguously assigned to a planar boron double wheel structure based on a comparison to simulated IR spectra of low energy isomers from density-functional-theory (DFT) computations. Born-Oppenheimer DFT molecular dynamics simulations show that B13+ exhibits internal quasi-rotation already at 100 K. Vibrational spectra derived from these simulations allow extracting the first spectroscopic evidence from the IRPD spectrum for the exceptional fluxionality of B13+ .


Proceedings of the National Academy of Sciences of the United States of America | 2014

Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+(H2O)20 clusters

Joseph A. Fournier; Conrad T. Wolke; Christopher J. Johnson; Mark A. Johnson; Nadja Heine; Sandy Gewinner; Wieland Schöllkopf; Tim K. Esser; Matias Ruben Fagiani; Harald Knorke; Knut R. Asmis

Significance Understanding the mechanics underlying the diffuse OH stretching spectrum of water is a grand challenge for contemporary physical chemistry. Water clusters play an increasingly important role in this endeavor, as they allow one to freeze and isolate the spectral behavior of relatively large assemblies with well-defined network morphologies. We exploit recently developed, hybrid instruments that integrate laser spectroscopy with cryogenic ion trap mass spectrometry to capture the H3O+ and Cs+ ions in cage structures formed by 20 water molecules. Their infrared spectra reveal a pattern of distinct transitions that is unprecedented for water networks in this size range. Theoretical analysis of these patterns then reveals the intramolecular distortions associated with water molecules at various sites in the 3D cages. Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H3O+ and Cs+ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm−1 range. The magic H3O+(H2O)20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Site-specific vibrational spectral signatures of water molecules in the magic H 3 O + (H 2 O) 20 and Cs + (H 2 O) 20 clusters

Joseph A. Fournier; Conrad T. Wolke; Christopher J. Johnson; Mark A. Johnson; Nadja Heine; Sandy Gewinner; Wieland Schöllkopf; Tim K. Esser; Matias Ruben Fagiani; Harald Knorke; Knut R. Asmis

Significance Understanding the mechanics underlying the diffuse OH stretching spectrum of water is a grand challenge for contemporary physical chemistry. Water clusters play an increasingly important role in this endeavor, as they allow one to freeze and isolate the spectral behavior of relatively large assemblies with well-defined network morphologies. We exploit recently developed, hybrid instruments that integrate laser spectroscopy with cryogenic ion trap mass spectrometry to capture the H3O+ and Cs+ ions in cage structures formed by 20 water molecules. Their infrared spectra reveal a pattern of distinct transitions that is unprecedented for water networks in this size range. Theoretical analysis of these patterns then reveals the intramolecular distortions associated with water molecules at various sites in the 3D cages. Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H3O+ and Cs+ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm−1 range. The magic H3O+(H2O)20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.


Physical Chemistry Chemical Physics | 2016

Gas phase vibrational spectroscopy of the protonated water pentamer: the role of isomers and nuclear quantum effects

Matias Ruben Fagiani; Harald Knorke; Tim K. Esser; Nadja Heine; Conrad T. Wolke; Sandy Gewinner; Wieland Schöllkopf; Marie-Pierre Gaigeot; Riccardo Spezia; Mark A. Johnson; Knut R. Asmis

We use cryogenic ion trap vibrational spectroscopy to study the structure of the protonated water pentamer, H+(H2O)5, and its fully deuterated isotopologue, D+(D2O)5, over nearly the complete infrared spectral range (220-4000 cm-1) in combination with harmonic and anharmonic electronic structure calculations as well as RRKM modelling. Isomer-selective IR-IR double-resonance measurements on the H+(H2O)5 isotopologue establish that the spectrum is due to a single constitutional isomer, thus discounting the recent analysis of the band pattern in the context of two isomers based on AIMD simulations 〈W. Kulig and N. Agmon, Phys. Chem. Chem. Phys., 2014, 16, 4933-4941〉. The evolution of the persistent bands in the D+(D2O)5 cluster allows the assignment of the fundamentals in the spectra of both isotopologues, and the simpler pattern displayed by the heavier isotopologue is consistent with the calculated spectrum for the branched, Eigen-based structure originally proposed 〈J.-C. Jiang, et al., J. Am. Chem. Soc., 2000, 122, 1398-1410〉. This pattern persists in the vibrational spectra of H+(H2O)5 in the temperature range from 13 K up to 250 K. The present study also underscores the importance of considering nuclear quantum effects in predicting the kinetic stability of these isomers at low temperatures.


Journal of Physical Chemistry Letters | 2015

Disentangling the Contribution of Multiple Isomers to the Infrared Spectrum of the Protonated Water Heptamer

Nadja Heine; Matias Ruben Fagiani; Knut R. Asmis

We use infrared/infrared double-resonance population labeling (IR(2)MS(2)) spectroscopy in the spectral region of the free and hydrogen-bonded OH stretching fundamentals (2880-3850 cm(-1)) to identify the number and to isolate the vibrational signatures of individual isomers contributing to the gas-phase IR spectra of the cryogenically cooled protonated water clusters H(+)(H2O)n·H2/D2 with n = 7-10. For n = 7, four isomers are identified and assigned. Surprisingly, the IR(2)MS(2) spectra of the protonated water octa-, nona-, and decamer show no evidence for multiple isomers. The present spectra support the prediction that the quasi-2D to 3D structural transition occurs in between n = 8 and 9 in the cold cluster regime. However, the same models have difficulty explaining the remarkable size dependence of the isomer population reported here.


Journal of Chemical Physics | 2014

The vibrational spectrum of FeO2+ isomers—Theoretical benchmark and experiment

Toni M. Maier; A. Daniel Boese; Joachim Sauer; Torsten Wende; Matias Ruben Fagiani; Knut R. Asmis

Infrared photodissociation is used to record the vibrational spectrum of FeO2 (+)(He)2-4 which shows three bands at 1035, 980, and 506 cm(-1). Quantum chemical multi-reference configuration interaction calculations (MRCISD) of structures and harmonic frequencies show that these bands are due to two different isomers, an inserted dioxo complex with Fe in the +V oxidation state and a side-on superoxo complex with Fe in the +II oxidation state. These two are separated by a substantial barrier, 53 kJ/mol, whereas the third isomer, an end-on complex between Fe(+) and an O2 molecule, is easily converted into the side-on complex. For all three isomers, states of different spin multiplicity have been considered. Our best energies are computed at the MRCISD+Q level, including corrections for complete active space and basis set extension, core-valence correlation, relativistic effects, and zero-point vibrational energy. The average coupled pair functional (ACPF) yields very similar energies. Density functional theory (DFT) differs significantly from our best estimates for this system, with the TPSS functional yielding the best results. The other functionals tested are BP86, PBE, B3LYP, TPSSh, and B2PLYP. Complete active space second order perturbation theory (CASPT2) performs better than DFT, but less good than ACPF.


Journal of Physical Chemistry Letters | 2017

Dissociative Water Adsorption by Al3O4+ in the Gas Phase

Matias Ruben Fagiani; Xiaowei Song; Sreekanta Debnath; Sandy Gewinner; Wieland Schöllkopf; Knut R. Asmis; Florian A. Bischoff; Fabian Müller; Joachim Sauer

We use cryogenic ion trap vibrational spectroscopy in combination with density functional theory (DFT) to study the adsorption of up to four water molecules on Al3O4+. The infrared photodissociation spectra of [Al3O4(D2O)1-4]+ are measured in the O-D stretching (3000-2000 cm-1) as well as the fingerprint spectral region (1300-400 cm-1) and are assigned based on a comparison with simulated harmonic infrared spectra for global minimum-energy structures obtained with DFT. We find that dissociative water adsorption is favored in all cases. The unambiguous assignment of the vibrational spectra of these gas phase model systems allows identifying characteristic spectral regions for O-D and O-H stretching modes of terminal (μ1) and bridging (μ2) hydroxyl groups in aluminum oxide/water systems, which sheds new light on controversial assignments for solid Al2O3 phases.


Journal of Chemical Physics | 2016

Gas phase vibrational spectroscopy of cold (TiO2)n− (n = 3–8) clusters

Marissa L. Weichman; Xiaowei Song; Matias Ruben Fagiani; Sreekanta Debnath; Sandy Gewinner; Wieland Schöllkopf; Daniel M. Neumark; Knut R. Asmis

We report infrared photodissociation (IRPD) spectra for the D2-tagged titanium oxide cluster anions (TiO2)n(-) with n = 3-8 in the spectral region from 450 to 1200 cm(-1). The IRPD spectra are interpreted with the aid of harmonic spectra from BP86/6-311+G* density functional theory calculations of energetically low-lying isomers. We conclusively assign the IRPD spectra of the n = 3 and n = 6 clusters to global minimum energy structures with Cs and C2 symmetry, respectively. The vibrational spectra of the n = 4 and n = 7 clusters can be attributed to contributions of at most two low-lying structures. While our calculations indicate that the n = 5 and n = 8 clusters have many more low-lying isomers than the other clusters, the dominant contributions to their spectra can be assigned to the lowest energy structures. Through comparison between the calculated and experimental spectra, we can draw conclusions about the size-dependent evolution of the properties of (TiO2)n(-) clusters, and on their potential utility as model systems for catalysis on a bulk TiO2 surface.

Collaboration


Dive into the Matias Ruben Fagiani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Fielicke

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Sauer

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge