Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matilde Said is active.

Publication


Featured researches published by Matilde Said.


Journal of Molecular and Cellular Cardiology | 2010

The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury

Margarita Ana Salas; Carlos Alfredo Valverde; Gina Sánchez; Matilde Said; Jesica S. Rodríguez; Enrique Leo Portiansky; Marcia A. Kaetzel; John R. Dedman; Paulina Donoso; Evangelia G. Kranias; Alicia Mattiazzi

Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) plays an important role mediating apoptosis/necrosis during ischemia-reperfusion (IR). We explored the mechanisms of this deleterious effect. Langendorff perfused rat and transgenic mice hearts with CaMKII inhibition targeted to sarcoplasmic reticulum (SR-AIP) were subjected to global IR. The onset of reperfusion increased the phosphorylation of Thr(17) site of phospholamban, without changes in total protein, consistent with an increase in CaMKII activity. Instead, there was a proportional decrease in the phosphorylation of Ser2815 site of ryanodine receptors (RyR2) and the amount of RyR2 at the onset of reperfusion, i.e. the ratio Ser2815/RyR2 did not change. Inhibition of the reverse Na(+)/Ca(2+)exchanger (NCX) mode (KBR7943) diminished phospholamban phosphorylation, reduced apoptosis/necrosis and enhanced mechanical recovery. CaMKII-inhibition (KN-93), significantly decreased phospholamban phosphorylation, infarct area, lactate dehydrogenase release (LDH) (necrosis), TUNEL positive nuclei, caspase-3 activity, Bax/Bcl-2 ratio and Ca(2+)-induced mitochondrial swelling (apoptosis), and increased contractile recovery when compared with non-treated IR hearts or IR hearts pretreated with the inactive analog, KN-92. Blocking SR Ca(2+) loading and release (thapsigargin/dantrolene), mitochondrial Ca(2+) uniporter (ruthenium red/RU360), or mitochondrial permeability transition pore (cyclosporine A), significantly decreased infarct size, LDH release and apoptosis. SR-AIP hearts failed to show an increase in the phosphorylation of Thr(17) of phospholamban at the onset of reflow and exhibited a significant decrease in infarct size, apoptosis and necrosis respect to controls. The results reveal an apoptotic-necrotic pathway mediated by CaMKII-dependent phosphorylations at the SR, which involves the reverse NCX mode and the mitochondria as trigger and end effectors, respectively, of the cascade.


Journal of Molecular and Cellular Cardiology | 2011

Calcium-calmodulin dependent protein kinase II (CaMKII): a main signal responsible for early reperfusion arrhythmias.

Matilde Said; R. Becerra; Carlos Alfredo Valverde; Marcia A. Kaetzel; John R. Dedman; Cecilia Mundiña-Weilenmann; Xander H.T. Wehrens; Leticia Vittone; Alicia Mattiazzi

To explore whether CaMKII-dependent phosphorylation events mediate reperfusion arrhythmias, Langendorff perfused hearts were submitted to global ischemia/reperfusion. Epicardial monophasic or transmembrane action potentials and contractility were recorded. In rat hearts, reperfusion significantly increased the number of premature beats (PBs) relative to pre-ischemic values. This arrhythmic pattern was associated with a significant increase in CaMKII-dependent phosphorylation of Ser2814 on Ca(2+)-release channels (RyR2) and Thr17 on phospholamban (PLN) at the sarcoplasmic reticulum (SR). These phenomena could be prevented by the CaMKII-inhibitor KN-93. In transgenic mice with targeted inhibition of CaMKII at the SR membranes (SR-AIP), PBs were significantly decreased from 31±6 to 5±1 beats/3min with a virtually complete disappearance of early-afterdepolarizations (EADs). In mice with genetic mutation of the CaMKII phosphorylation site on RyR2 (RyR2-S2814A), PBs decreased by 51.0±14.7%. In contrast, the number of PBs upon reperfusion did not change in transgenic mice with ablation of both PLN phosphorylation sites (PLN-DM). The experiments in SR-AIP mice, in which the CaMKII inhibitor peptide is anchored in the SR membrane but also inhibits CaMKII regulation of L-type Ca(2+) channels, indicated a critical role of CaMKII-dependent phosphorylation of SR proteins and/or L-type Ca(2+) channels in reperfusion arrhythmias. The experiments in RyR2-S2814A further indicate that up to 60% of PBs related to CaMKII are dependent on the phosphorylation of RyR2-Ser2814 site and could be ascribed to delayed-afterdepolarizations (DADs). Moreover, phosphorylation of PLN-Thr17 and L-type Ca(2+) channels might contribute to reperfusion-induced PBs, by increasing SR Ca(2+) content and Ca(2+) influx.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Increased intracellular Ca2+ and SR Ca2+ load contribute to arrhythmias after acidosis in rat heart. Role of Ca2+/calmodulin-dependent protein kinase II.

Matilde Said; R. Becerra; Julieta Palomeque; G. Rinaldi; Marcia A. Kaetzel; P. L. Diaz-Sylvester; J. A. Copello; J. R. Dedman; Cecilia Mundiña-Weilenmann; Leticia Vittone; Alicia Mattiazzi

Returning to normal pH after acidosis, similar to reperfusion after ischemia, is prone to arrhythmias. The type and mechanisms of these arrhythmias have never been explored and were the aim of the present work. Langendorff-perfused rat/mice hearts and rat-isolated myocytes were subjected to respiratory acidosis and then returned to normal pH. Monophasic action potentials and left ventricular developed pressure were recorded. The removal of acidosis provoked ectopic beats that were blunted by 1 muM of the CaMKII inhibitor KN-93, 1 muM thapsigargin, to inhibit sarcoplasmic reticulum (SR) Ca(2+) uptake, and 30 nM ryanodine or 45 muM dantrolene, to inhibit SR Ca(2+) release and were not observed in a transgenic mouse model with inhibition of CaMKII targeted to the SR. Acidosis increased the phosphorylation of Thr(17) site of phospholamban (PT-PLN) and SR Ca(2+) load. Both effects were precluded by KN-93. The return to normal pH was associated with an increase in SR Ca(2+) leak, when compared with that of control or with acidosis at the same SR Ca(2+) content. Ca(2+) leak occurred without changes in the phosphorylation of ryanodine receptors type 2 (RyR2) and was blunted by KN-93. Experiments in planar lipid bilayers confirmed the reversible inhibitory effect of acidosis on RyR2. Ectopic activity was triggered by membrane depolarizations (delayed afterdepolarizations), primarily occurring in epicardium and were prevented by KN-93. The results reveal that arrhythmias after acidosis are dependent on CaMKII activation and are associated with an increase in SR Ca(2+) load, which appears to be mainly due to the increase in PT-PLN.


The Journal of Physiology | 2005

Frequency‐dependent acceleration of relaxation in mammalian heart: a property not relying on phospholamban and SERCA2a phosphorylation

Carlos A. Valverde; Cecilia Mundiña-Weilenmann; Matilde Said; Paola Ferrero; Leticia Vittone; Margarita Salas; Julieta Palomeque; Martin Vila Petroff; Alicia Mattiazzi

An increase in stimulation frequency causes an acceleration of myocardial relaxation (FDAR). Several mechanisms have been postulated to explain this effect, among which is the Ca2+–calmodulin‐dependent protein kinase (CaMKII)‐dependent phosphorylation of the Thr17 site of phospholamban (PLN). To gain further insights into the mechanisms of FDAR, we studied the FDAR and the phosphorylation of PLN residues in perfused rat hearts, cat papillary muscles and isolated cat myocytes. This allowed us to sweep over a wide range of frequencies, in species with either positive or negative force–frequency relationships, as well as to explore the FDAR under isometric (or isovolumic) and isotonic conditions. Results were compared with those produced by isoprenaline, an intervention known to accelerate relaxation (IDAR) via PLN phosphorylation. While IDAR occurs tightly associated with a significant increase in the phosphorylation of Ser16 and Thr17 of PLN, FDAR occurs without significant changes in the phosphorylation of PLN residues in the intact heart and cat papillary muscles. Moreover, in intact hearts, FDAR was not associated with any significant change in the CaMKII‐dependent phosphorylation of sarcoplasmic/endoplasmic Ca2+ ATPase (SERCA2a), and was not affected by the presence of the CaMKII inhibitor, KN‐93. In isolated myocytes, FDAR occurred associated with an increase in Thr17 phosphorylation. However, for a similar relaxant effect produced by isoprenaline, the phosphorylation of PLN (Ser16 and Thr17) was significantly higher in the presence of the β‐agonist. Moreover, the time course of Thr17 phosphorylation was significantly delayed with respect to the onset of FDAR. In contrast, the time course of Ser16 phosphorylation, the first residue that becomes phosphorylated with isoprenaline, was temporally associated with IDAR. Furthermore, KN‐93 significantly decreased the phosphorylation of Thr17 that was evoked by increasing the stimulation frequency, but failed to affect FDAR. Taken together, the results provide direct evidence indicating that CaMKII phosphorylation pathways are not involved in FDAR and that FDAR and IDAR do not share a common underlying mechanism. More likely, a CaMKII‐independent mechanism could be involved, whereby increasing stimulation frequency would disrupt the SERCA2a–PLN interaction, leading to an increase in SR Ca2+ uptake and myocardial relaxation.


Journal of Molecular and Cellular Cardiology | 2014

CaMKII-dependent phosphorylation of cardiac ryanodine receptors regulates cell death in cardiac ischemia/reperfusion injury

Mariano Nahuel Di Carlo; Matilde Said; Haiyun Ling; Carlos Alfredo Valverde; Verónica C. De Giusti; Leandro Matías Sommese; Julieta Palomeque; Ernesto A. Aiello; Darlene G. Skapura; Gustavo Rinaldi; Jonathan L. Respress; Joan Heller Brown; Xander H.T. Wehrens; Margarita Ana Salas; Alicia Mattiazzi

Ca(2+)-calmodulin kinase II (CaMKII) activation is deleterious in cardiac ischemia/reperfusion (I/R). Moreover, inhibition of CaMKII-dependent phosphorylations at the sarcoplasmic reticulum (SR) prevents CaMKII-induced I/R damage. However, the downstream targets of CaMKII at the SR level, responsible for this detrimental effect, remain unclear. In the present study we aimed to dissect the role of the two main substrates of CaMKII at the SR level, phospholamban (PLN) and ryanodine receptors (RyR2), in CaMKII-dependent I/R injury. In mouse hearts subjected to global I/R (45/120min), phosphorylation of the primary CaMKII sites, S2814 on cardiac RyR2 and of T17 on PLN, significantly increased at the onset of reperfusion whereas PKA-dependent phosphorylation of RyR2 and PLN did not change. Similar results were obtained in vivo, in mice subjected to regional myocardial I/R (1/24h). Knock-in mice with an inactivated serine 2814 phosphorylation site on RyR2 (S2814A) significantly improved post-ischemic mechanical recovery, reduced infarct size and decreased apoptosis. Conversely, knock-in mice, in which CaMKII site of RyR2 is constitutively activated (S2814D), significantly increased infarct size and exacerbated apoptosis. In S2814A and S2814D mice subjected to regional myocardial ischemia, infarct size was also decreased and increased respectively. Transgenic mice with double-mutant non-phosphorylatable PLN (S16A/T17A) in the PLN knockout background (PLNDM) also showed significantly increased post-ischemic cardiac damage. This effect cannot be attributed to PKA-dependent PLN phosphorylation and was not due to the enhanced L-type Ca(2+) current, present in these mice. Our results reveal a major role for the phosphorylation of S2814 site on RyR2 in CaMKII-dependent I/R cardiac damage. In contrast, they showed that CaMKII-dependent increase in PLN phosphorylation during reperfusion opposes rather than contributes to I/R damage.


Molecular and Cellular Biochemistry | 2004

Phosphorylation of phospholamban in ischemia-reperfusion injury: Functional role of Thr17 residue

Alicia Mattiazzi; Cecilia Mundiña-Weilenmann; Leticia Vittone; Matilde Said

Phospholamban (PLB) is a sarcoplasmic reticulum (SR) protein that when phosphorylated at Ser(16) by PKA and/or at Thr(17) by CaMKII increases the affinity of the SR Ca(2+) pump for Ca(2+). PLB is therefore, a critical regulator of SR function, myocardial relaxation and myocardial contractility. The present study was undertaken to examine the status of PLB phosphorylation after ischemia and reperfusion and to provide evidence about the possible role of the phosphorylation of Thr(17) PLB residue on the recovery of contractility and relaxation after a period of ischemia. Experiments were performed in Langendorff perfused hearts from Wistar rats. Hearts were submitted to a protocol of global normothermic ischemia and reperfusion. The results showed that (1) the phosphorylation of Ser(16) and Thr(17) residues of PLB increased at the end of the ischemia and the onset of reperfusion, respectively. The increase in Thr(17) phosphorylation was associated with a recovery of relaxation to preischemic values. This recovery occurred in spite of the fact that contractility was depressed. (2) The reperfusion-induced increase in Thr(17) phosphorylation was dependent on Ca(2+) entry to the cardiac cell. This Ca(2+) influx would mainly occur by the coupled activation of the Na(+)/H(+) exchanger and the Na(+)/Ca(2+) exchanger working in the reverse mode, since phosphorylation of Thr(17) was decreased by inhibition of these exchangers and not affected by blockade of the L-type Ca(2+) channels. (3) Specific inhibition of CaMKII by KN93 significantly decreased Thr(17) phosphorylation. This decrease was associated with an impairment of myocardial relaxation. The present study suggests that the phosphorylation of Thr(17) of PLB upon reflow, may favor the full recovery of relaxation after ischemia. (Mol Cell Biochem 263: 131-136, 2004).Phospholamban (PLB) is a sarcoplasmic reticulum (SR) protein that when phosphorylated at Ser16 by PKA and/or at Thr17 by CaMKII increases the affinity of the SR Ca2+ pump for Ca2+. PLB is therefore, a critical regulator of SR function, myocardial relaxation and myocardial contractility. The present study was undertaken to examine the status of PLB phosphorylation after ischemia and reperfusion and to provide evidence about the possible role of the phosphorylation of Thr17 PLB residue on the recovery of contractility and relaxation after a period of ischemia. Experiments were performed in Langendorff perfused hearts from Wistar rats. Hearts were submitted to a protocol of global normothermic ischemia and reperfusion. The results showed that (1) the phosphorylation of Ser16 and Thr17 residues of PLB increased at the end of the ischemia and the onset of reperfusion, respectively. The increase in Thr17 phosphorylation was associated with a recovery of relaxation to preischemic values. This recovery occurred in spite of the fact that contractility was depressed. (2) The reperfusion-induced increase in Thr17 phosphorylation was dependent on Ca2+ entry to the cardiac cell. This Ca2+ influx would mainly occur by the coupled activation of the Na+/H+ exchanger and the Na+/Ca2+ exchanger working in the reverse mode, since phosphorylation of Thr17 was decreased by inhibition of these exchangers and not affected by blockade of the L-type Ca2+ channels. (3) Specific inhibition of CaMKII by KN93 significantly decreased Thr17 phosphorylation. This decrease was associated with an impairment of myocardial relaxation. The present study suggests that the phosphorylation of Thr17 of PLB upon reflow, may favor the full recovery of relaxation after ischemia. (Mol Cell Biochem 263: 131–136, 2004)


Journal of Molecular and Cellular Cardiology | 2014

Stimulation of NOX2 in isolated hearts reversibly sensitizes RyR2 channels to activation by cytoplasmic calcium.

Paulina Donoso; José Pablo Finkelstein; Luis Montecinos; Matilde Said; Gina Sánchez; Leticia Vittone; Ricardo Bull

The response of ryanodine receptor (RyR) channels to cytoplasmic free calcium concentration ([Ca(2+)]) is redox sensitive. Here, we report the effects of a mild oxidative stress on cardiac RyR (RyR2) channels in Langendorff perfused rat hearts. Single RyR2 channels from control ventricles displayed the same three responses to Ca(2+) reported in other mammalian tissues, characterized by low, moderate, or high maximal activation. A single episode of 5 min of global ischemia, followed by 1 min of reperfusion, enhanced 2.3-fold the activity of NOX2 compared to controls and changed the frequency distribution of the different responses of RyR2 channels to calcium, favoring the more active ones: high activity response increased and low activity response decreased with respect to controls. This change was fully prevented by perfusion with apocynin or VAS 2870 before ischemia and totally reversed by the extension of the reperfusion period to 15 min. In vitro activation of NOX2 in control SR vesicles mimicked the effect of the ischemia/reperfusion episode on the frequencies of emergence of single RyR2 channel responses to [Ca(2+)] and increased 2.2-fold the rate of calcium release in Ca(2+)-loaded SR vesicles. In vitro changes were reversed at the single channel level by DTT and in isolated SR vesicles by glutaredoxin. Our results indicate that in whole hearts a mild oxidative stress enhances the response of cardiac RyR2 channels to calcium via NOX2 activation, probably by S-glutathionylation of RyR2 protein. This change is transitory and fully reversible, suggesting a possible role of redox modification in the physiological response of cardiac RyR2 to cellular calcium influx.


Journal of Molecular and Cellular Cardiology | 2013

Role of CaMKII in post acidosis arrhythmias: a simulation study using a human myocyte model.

Elena C. Lascano; Matilde Said; Leticia Vittone; Alicia Mattiazzi; Cecilia Mundiña-Weilenmann; Jorge A. Negroni

Postacidotic arrhythmias have been associated to increased sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation. However, the molecular mechanisms underlying these arrhythmias are still unclear. To better understand this process, acidosis produced by CO2 increase from 5% to 30%, resulting in intracellular pH (pHi) change from 7.15 to 6.7, was incorporated into a myocyte model of excitation-contraction coupling and contractility, including acidotic inhibition of L-type Ca(2+) channel (I(CaL)), Na(+)-Ca(2+) exchanger, Ca(2+) release through the SR ryanodine receptor (RyR2) (I(rel)), Ca(2+) reuptake by the SR Ca(2+) ATPase2a (I(up)), Na(+)-K(+) pump, K(+) efflux through the inward rectifier K(+) channel and the transient outward K(+) flow (I(to)) together with increased activity of the Na(+)-H(+) exchanger (I(NHE)). Simulated CaMKII regulation affecting I(rel), I(up), I(CaL), I(NHE) and I(to) was introduced in the model to partially compensate the acidosis outcome. Late Na(+) current increase by CaMKII was also incorporated. Using this scheme and assuming that diastolic Ca(2+) leak through the RyR2 was modulated by the resting state of this channel and the difference between SR and dyadic cleft [Ca(2+)], postacidotic delayed after depolarizations (DADs) were triggered upon returning to normal pHi after 6 min acidosis. The model showed that DADs depend on SR Ca(2+) load and on increased Ca(2+) leak through RyR2. This postacidotic arrhythmogenic pattern relies mainly on CaMKII effect on I(CaL) and I(up), since its individual elimination produced the highest DAD reduction. The model further revealed that during the return to normal pHi, DADs are fully determined by SR Ca(2+) load at the end of acidosis. Thereafter, DADs are maintained by SR Ca(2+) reloading by Ca(2+) influx through the reverse NCX mode during the time period in which [Na(+)]i is elevated.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Reversible redox modifications of ryanodine receptor ameliorate ventricular arrhythmias in the ischemic-reperfused heart

R. Becerra; Bárbara Soledad Román; Mariano N. Di Carlo; Juan Ignacio Mariangelo; Margarita Salas; Gina Sánchez; Paulina Donoso; Guillermo Schinella; Leticia Vittone; Xander H.T. Wehrens; Cecilia Mundiña-Weilenmann; Matilde Said

Previous results from our laboratory showed that phosphorylation of ryanodine receptor 2 (RyR2) by Ca(2+) calmodulin-dependent kinase II (CaMKII) was a critical but not the unique event responsible for the production of reperfusion-induced arrhythmogenesis, suggesting the existence of other mechanisms cooperating in an additive way to produce these rhythm alterations. Oxidative stress is a prominent feature of ischemia/reperfusion injury. Both CaMKII and RyR2 are proteins susceptible to alteration by redox modifications. This study was designed to elucidate whether CaMKII and RyR2 redox changes occur during reperfusion and whether these changes are involved in the genesis of arrhythmias. Langendorff-perfused hearts from rats or transgenic mice with genetic ablation of CaMKII phosphorylation site on RyR2 (S2814A) were subjected to ischemia-reperfusion in the presence or absence of a free radical scavenger (mercaptopropionylglycine, MPG) or inhibitors of NADPH oxidase and nitric oxide synthase. Left ventricular contractile parameters and monophasic action potentials were recorded. Oxidation and phosphorylation of CaMKII and RyR2 were assessed. Increased oxidation of CaMKII during reperfusion had no consequences on the level of RyR2 phosphorylation. Avoiding the reperfusion-induced thiol oxidation of RyR2 with MPG produced a reduction in the number of arrhythmias and did not modify the contractile recovery. Conversely, selective prevention of S-nitrosylation and S-glutathionylation of RyR2 was associated with higher numbers of arrhythmias and impaired contractility. In S2814A mice, treatment with MPG further reduced the incidence of arrhythmias. Taken together, the results suggest that redox modification of RyR2 synergistically with CaMKII phosphorylation modulates reperfusion arrhythmias.


PLOS ONE | 2014

Increased Na+/Ca2+ Exchanger Expression/Activity Constitutes a Point of Inflection in the Progression to Heart Failure of Hypertensive Rats

Jesica S. Rodriguez; J. Omar Velez Rueda; Margarita Salas; R. Becerra; Mariano N. Di Carlo; Matilde Said; Leticia Vittone; Gustavo Rinaldi; Enrique Leo Portiansky; Cecilia Mundiña-Weilenmann; Julieta Palomeque; Alicia Mattiazzi

Spontaneously hypertensive rat (SHR) constitutes a genetic model widely used to study the natural evolution of hypertensive heart disease. Ca2+-handling alterations are known to occur in SHR. However, the putative modifications of Ca2+-handling proteins during the progression to heart failure (HF) are not well established. Moreover, the role of apoptosis in SHR is controversial. We investigated intracellular Ca2+, Ca2+-handling proteins and apoptosis in SHR vs. control Wistar rats (W) from 3 to 15 months (mo). Changes associated with the transition to HF (i.e. lung edema and decrease in midwall fractional shortening), occurred at 15 mo in 38% of SHR (SHRF). In SHRF, twitch and caffeine-induced Ca2+ transients, significantly decreased relative to 6/9 mo and 15 mo without HF signs. This decrease occurred in association with a decrease in the time constant of caffeine-Ca2+ transient decay and an increase in Na+/Ca2+ exchanger (NCX) abundance (p<0.05) with no changes in SERCA2a expression/activity. An increased Ca2+-calmodulin-kinase II activity, associated with an enhancement of apoptosis (TUNEL and Bax/Bcl2) was observed in SHR relative to W from 3 to 15 mo. Conclusions: 1. Apoptosis is an early and persistent event that may contribute to hypertrophic remodeling but would not participate in the contractile impairment of SHRF. 2. The increase in NCX expression/activity, associated with an increase in Ca2+ efflux from the cell, constitutes a primary alteration of Ca2+-handling proteins in the evolution to HF. 3. No changes in SERCA2a expression/activity are observed when HF signs become evident.

Collaboration


Dive into the Matilde Said's collaboration.

Top Co-Authors

Avatar

Leticia Vittone

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar

Alicia Mattiazzi

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Ferrero

Facultad de Ciencias Médicas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evangelia G. Kranias

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo Rinaldi

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Julieta Palomeque

National University of La Plata

View shared research outputs
Researchain Logo
Decentralizing Knowledge