Matilde Segura
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matilde Segura.
Aquatic Toxicology | 2013
Carmen Rojo; Matilde Segura; Francisco Cortés; María A. Rodrigo
Microcystins (MCs) are produced by cyanobacteria in aquatic environments and adversely affect macrophytes at very high concentrations. However, the effects of MC on macrophytes at concentrations of environmental relevance are largely unknown. The main objective of this study was to analyze the allelopathic effects of MC-LR at natural concentrations (1, 8 and 16 μg MC-LR/L) on five charophyte species (Chara aspera, C. baltica, C. hispida, C. vulgaris and Nitella hyalina) and the angiosperm Myriophyllum spicatum. Macrophyte specimens were obtained from a restored area located in Albufera de València Natural Park, a protected coastal Mediterranean wetland. Two different experiments were conducted involving (i) the addition of MC-LR to natural sediment to evaluate its effects on seed germination and (ii) the addition of MC-LR to water cultures of macrophytes to evaluate its effects on growth and metabolic functions. In water, the MC-LR concentration decreased by 84% in two weeks; the loss was not significant in sediment. The first seedlings (all C. hispida) emerged from the wetland sediment following a delay of a few days in the presence of MC-LR. The germination rates in 8 and 16 μg MC-LR/L treatments were 44% and 11% of that occurring in the absence of MC, but these differences disappeared over time. The final density was 6-7 germlings/dm(3). Final germling length was unaffected by MC-LR. Rotifers (Lecane spp.) emerging from the natural sediment during the experiment were favored by MC-LR; the opposite pattern was observed in the cladoceran Daphnia magna. The growth rates of C. vulgaris, C. baltica and N. hyalina were unaffected by MC exposure, whereas those of C. hispida and C. aspera were reduced in the MC treatments relative to the control treatment. The concentration of chlorophyll-a and the in vivo net photosynthetic rate were lower in the presence of MC-LR, even at the lowest concentration, for all of the characeans tested. M. spicatum was sensitive to the presence of MC-LR in the culture medium; the growth and chlorophyll-a concentrations were reduced. Therefore, environmentally relevant concentrations of MC might induce important changes in macrophyte meadows and the structure of the associated plankton community. Synchrony or delay in the processes evaluated here in response to environmentally relevant concentrations of cyanobacteria MC exudates can enhance understanding of the turning point to alternative states and the point of no return in eutrophicated shallow lakes.
Aquatic Ecology | 2009
María A. Rodrigo; Carmen Rojo; Matilde Segura; José Larrosa
We attempt to ascertain the selection mechanisms that affect algal species’ abilities to thrive in a given environment, and how the variability of the response is reflected in the community structure (total biomass, diversity) and also in community function (photosynthesis and respiration). For that, we formed algal communities, assembling eight species of freshwater cosmopolite algae with distinct morphologies (Cosmarium contractum, Cryptomonas ovata, Euglena gracilis, Limnothrix redekei, Monoraphidium contortum, Pediastrum tetras, Planktothrix agardhii and Scenedesmus acutus) and performed four treatments combining low and high nutrient concentrations (N and P) in the culture media and a presence or absence of herbivores (a mixture of Daphnia magna, Keratella cochlearis and Brachionus calicyflorus). Competition between pairs of algae was also studied, and the viability of the species as inocula after a senescence period. The presence of herbivores (predation) and nutrient concentration (competition) are the mechanisms affecting (individually or synergistically) microalgae assemblages, originating different alternative states from the same pool of species. However, the effect of these mechanisms may vary, depending on algal properties such as size, growth rate and viability as an inoculum. The presence of herbivores and oligotrophic conditions reduce the primary producer biomass but increase diversity due to relaxation of competition and increase the uncertainty of final states. The variations in the community structure directly reflect on community function, affecting primary production and respiration.
PLOS ONE | 2016
Carmen Rojo; Francesc Mesquita-Joanes; Juan S. Monrós; Javier Armengol; Mahmood Sasa; Fabián Bonilla; Ricardo Rueda; José Benavent-Corai; Rubén Piculo; Matilde Segura
The alternating climate between wet and dry periods has important effects on the hydrology and therefore on niche-based processes of water bodies in tropical areas. Additionally, assemblages of microorganism can show spatial patterns, in the form of a distance decay relationship due to their size or life form. We aimed to test spatial and environmental effects, modulated by a seasonal flooding climatic pattern, on the distribution of microalgae in 30 wetlands of a tropical dry forest region: the Pacific coast of Costa Rica and Nicaragua. Three surveys were conducted corresponding to the beginning, the highest peak, and the end of the hydrological year during the wet season, and species abundance and composition of planktonic and benthic microalgae was determined. Variation partitioning analysis (as explained by spatial distance or environmental factors) was applied to each seasonal dataset by means of partial redundancy analysis. Our results show that microalgal assemblages were structured by spatial and environmental factors depending on the hydrological period of the year. At the onset of hydroperiod and during flooding, neutral effects dominated community dynamics, but niche-based local effects resulted in more structured algal communities at the final periods of desiccating water bodies. Results suggest that climate-mediated effects on hydrology can influence the relative role of spatial and environmental factors on metacommunities of microalgae. Such variability needs to be accounted in order to describe accurately community dynamics in tropical coastal wetlands.
Ecological Engineering | 2013
Carmen Rojo; Matilde Segura; María A. Rodrigo
Aquatic Botany | 2015
María A. Rodrigo; Carmen Rojo; Matilde Segura; José L. Alonso-Guillén; Miguel Martín; Pablo Vera
Ecological Engineering | 2013
María A. Rodrigo; Miguel Martín; Carmen Rojo; Sara Gargallo; Matilde Segura; N. Oliver
Hydrobiologia | 2009
Carmen Rojo; Matilde Segura; María A. Rodrigo; Guillem Salazar
Ecological Engineering | 2015
Sara Calero; Matilde Segura; Carmen Rojo; María A. Rodrigo
Limnetica | 2007
María A. Rodrigo; Carmen Rojo; José Larrosa; Matilde Segura; Marie Moeys
Anales Del Jardin Botanico De Madrid | 2005
Visitación Conforti; Marie Lionard; Matilde Segura; Carmen Rojo