Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mats Bemark is active.

Publication


Featured researches published by Mats Bemark.


Current Biology | 2000

Disruption of mouse polymerase ζ (Rev3) leads to embryonic lethality and impairs blastocyst development in vitro

Mats Bemark; Amine A Khamlichi; Sarah L. Davies; Michael S. Neuberger

Multiple DNA polymerases exist in eukaryotes. Polymerases alpha, delta and epsilon are mainly responsible for chromosomal DNA replication in the nucleus and are required for proliferation. In contrast, the repair polymerases beta and eta are not essential for cellular proliferation in yeast or mice, but a lack of either polymerase can lead, respectively, to defects in base excision repair or the ability to replicate past lesions induced by ultraviolet (UV) radiation [1-3]. Here, we have focused on polymerase zeta. This was first described as a non-essential product of the yeast REV3/REV7 genes involved in UV-induced mutagenesis, and was later implicated in trans-lesion synthesis [4,5]. Unlike in yeast, the mouse homologue (mRev3) was found to be essential for life. Homozygous mutant mice died in utero. Mutant embryos were considerably reduced in size at day 10.5 of development and usually aborted around day 12.5. It is likely that this block reflects a need for mRev3 in proliferative clonal expansion (rather than in the production of a particular cell type) as mutant blastocysts showed greatly diminished expansion of the inner cell mass in culture. Thus, mRev3 could be required to repair a form of externally induced DNA damage that otherwise accumulates during clonal expansion or, consistent with the high homology shared between its Rev7 partner and the mitotic checkpoint gene product Mad2 [6], mRev3 might play a role in cell proliferation and genomic stability even in the absence of environmentally induced damage.


EMBO Reports | 2015

The composition of the gut microbiota shapes the colon mucus barrier

Hedvig E. Jakobsson; Ana M. Rodríguez-Piñeiro; André Schütte; Anna Ermund; Preben Boysen; Mats Bemark; Felix Sommer; Fredrik Bäckhed; Gunnar C. Hansson; Malin E. V. Johansson

Two C57BL/6 mice colonies maintained in two rooms of the same specific pathogen‐free (SPF) facility were found to have different gut microbiota and a mucus phenotype that was specific for each colony. The thickness and growth of the colon mucus were similar in the two colonies. However, one colony had mucus that was impenetrable to bacteria or beads the size of bacteria—which is comparable to what we observed in free‐living wild mice—whereas the other colony had an inner mucus layer penetrable to bacteria and beads. The different properties of the mucus depended on the microbiota, as they were transmissible by transfer of caecal microbiota to germ‐free mice. Mice with an impenetrable mucus layer had increased amounts of Erysipelotrichi, whereas mice with a penetrable mucus layer had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Thus, our study shows that bacteria and their community structure affect mucus barrier properties in ways that can have implications for health and disease. It also highlights that genetically identical animals housed in the same facility can have rather distinct microbiotas and barrier structures.


Journal of Immunology | 2006

Gut IgA Class Switch Recombination in the Absence of CD40 Does Not Occur in the Lamina Propria and Is Independent of Germinal Centers

Peter Bergqvist; Eva Gärdby; Anneli Stensson; Mats Bemark; Nils Lycke

Conflicting findings have recently been presented as to the sites and sources of B cells that undergo class switch recombination (CSR) to IgA in the gut. In this study we provide compelling evidence in CD40−/− mice demonstrating that IgA CSR can be independent of CD40 signaling and germinal center formation and does not occur in the gut lamina propria (LP) itself. We found that CD40−/− mice had near normal levels of gut total IgA despite lacking germinal centers and completely failing to raise specific responses against the T cell-dependent Ags cholera toxin and keyhole limpet hemocyanin. The Peyer’s patches in CD40−/− mice expressed unexpectedly high levels of activation-induced cytidine deaminase mRNA and germline α transcripts, but few postswitch circular DNA transcripts, arguing against significant IgA CSR. Moreover and more surprisingly, wild-type mice exhibited no to low IgA CSR in mesenteric lymph nodes or isolated lymphoid follicles. Importantly, both strains failed to demonstrate any of the molecular markers for IgA CSR in the gut LP itself. Whereas all of the classical sites for IgA CSR in the GALT in CD40−/− mice appeared severely compromised for IgA CSR, B cells in the peritoneal cavity demonstrated the expression of activation-induced cytidine deaminase mRNA comparable to that of wild-type mice. However, peritoneal cavity B cells in both strains expressed intermediate levels of the germinal center marker GL7 and exhibited no germline α transcripts, and only three of 51 mice analyzed showed the presence of postswitch circular DNA transcripts. Taken together, these findings strongly argue for alternative inductive sites for gut IgA CSR against T cell-independent Ags outside of the GALT and the nonorganized LP.


Journal of Biological Chemistry | 2006

REV3 and REV1 Play Major Roles in Recombination-independent Repair of DNA Interstrand Cross-links Mediated by Monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA)

Xi Shen; Sohee Jun; Lindsey E. O'Neal; Eiichiro Sonoda; Mats Bemark; Julian E. Sale; Lei Li

DNA interstrand cross-links (ICLs) are the most cytotoxic lesions to eukaryotic genome and are repaired by both homologous recombination-dependent and -independent mechanisms. To better understand the role of lesion bypass polymerases in ICL repair, we investigated recombination-independent repair of ICLs in REV3 and REV1 deletion mutants constructed in avian DT40 cells and mouse embryonic fibroblast cells. Our results showed that Rev3 plays a major role in recombination-independent ICL repair, which may account for the extreme sensitivity of REV3 mutants to cross-linking agents. This result raised the possibility that the NER gap synthesis, when encountering an adducted base present in the ICL repair intermediate, can lead to recruitment of Rev3, analogous to the recruitment of polymerase η during replicative synthesis. Indeed, the monoubiquitination-defective Proliferating Cell Nuclear Antigen (PCNA) mutant exhibits impaired recombination-independent ICL repair as well as drastically reduced mutation rate, indicating that the PCNA switch is utilized to enable lesion bypass during DNA repair synthesis. Analyses of a REV1 deletion mutant also revealed a significant reduction in recombination-independent ICL repair, suggesting that Rev1 cooperates with Rev3 in recombination-independent ICL repair. Moreover, deletion of REV3 or REV1 significantly altered the spectrum of mutations resulting from ICL repair, further confirming their involvement in mutagenic repair of ICLs.


Journal of Immunology | 2010

T Cell-Independent IgA Class Switch Recombination Is Restricted to the GALT and Occurs Prior to Manifest Germinal Center Formation

Peter Bergqvist; Anneli Stensson; Nils Lycke; Mats Bemark

Recently, we reported that CD40−/− mice, exhibiting exclusively T cell-independent IgA class switch recombination (CSR), demonstrated near normal levels of IgA plasma cells in the gut lamina propria (LP), despite the complete lack of germinal centers (GCs). In this study, we have extended our analysis focusing on how to reconcile these findings using flow cytometry and molecular markers for IgA CSR. In agreement with our previous results with small intestinal LP, the colon LP was found to host IgA CSR only when lymphoid follicles were present. Thus, no IgA CSR was observed in the nonorganized colon LP. By contrast, the Peyer’s patch (PP) was the dominant IgA CSR site in both CD40−/− and wild type (WT) mice, and they both hosted similar levels of mRNA expression for B cell activating factor of the TNF family, a proliferation inducing ligand, and inducible NO synthase, potential switch-factors for IgA. Unexpectedly, we found that PP B cells undergoing IgA CSR were GL7-intermediate. These cells had not undergone somatic hypermutations (SHMs), whereas GL7-high cells in WT PP, which exhibited GCs, were heavily mutated. Moreover, IgA plasma cells in the LP of CD40−/− mice demonstrated few mutations in their Ig V regions, whereas WT LP B cells from different sites showed extensive SHMs, which were also clonally related. Therefore, IgA CSR can occur in PP at a stage preceding manifest GC (GL7-intermediate), whereas SHM require GC formations (GL7-high). These findings reconcile that IgA CSR can occur in PP in the absence of GC with the fact that CD40−/− mice host near normal levels of IgA plasma cells in the LP.


Annals of the New York Academy of Sciences | 2012

Induction of gut IgA production through T cell‐dependent and T cell‐independent pathways

Mats Bemark; Preben Boysen; Nils Lycke

The gut immune system protects against mucosal pathogens, maintains a mutualistic relationship with the microbiota, and establishes tolerance against food antigens. This requires a balance between immune effector responses and induction of tolerance. Disturbances of this strictly regulated balance can lead to infections or the development inflammatory diseases and allergies. Production of secretory IgA is a unique effector function at mucosal surfaces, and basal mechanisms regulating IgA production have been the focus of much recent research. These investigations have aimed at understanding how long‐term IgA‐mediated mucosal immunity can best be achieved by oral or sublingual vaccination, or at analyzing the relationship between IgA production, the composition of the gut microbiota, and protection from allergies and autoimmunity. This research has lead to a better understanding of the IgA system; but at the same time seemingly conflicting data have been generated. Here, we discuss how gut IgA production is controlled, with special focus on how differences between T cell‐dependent and T cell‐independent IgA production may explain some of these discrepancies.


Journal of Biological Chemistry | 1999

Spi-C, a Novel Ets Protein That Is Temporally Regulated during B Lymphocyte Development

Mats Bemark; Annica Mårtensson; David Liberg; Tomas Leanderson

A novel Ets protein was isolated by yeast one-hybrid screening of a cDNA library made from lipopolysaccharide-stimulated mouse splenic B cells, using the SP6 κ promoter κY element as a bait. The novel Ets protein was most closely related to PU.1 and Spi-B within the DNA binding Ets domain and was therefore named Spi-C. However, Spi-C may represent a novel subgroup within the Ets protein family, as it differed significantly from Spi-B and PU.1 within helix 1 of the Ets domain. Spi-C was encoded by a single-copy gene that was mapped to chromosome 10, region C. Spi-C interacted with DNA similarly to PU.1 as judged by methylation interference, band-shift and site selection analysis, and activated transcription of a κY element reporter gene upon co-transfection of HeLa cells. Spi-C RNA was expressed in mature B lymphocytes and at lower levels in macrophages. Furthermore, pre-B cell and plasma cell lines were Spi-C-negative, suggesting that Spi-C might be a regulatory molecule during a specific phase of B lymphoid development.


Mucosal Immunology | 2013

Re-utilization of germinal centers in multiple Peyer's patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses

Peter Bergqvist; Anneli Stensson; L Hazanov; Anna Holmberg; Johan Mattsson; Ramit Mehr; Mats Bemark; Nils Lycke

Whereas gut IgA responses to the microbiota may be multi-centered and diverse, little is known about IgA responses to T-cell-dependent antigens following oral immunizations. Using a novel approach, gut IgA responses to oral hapten (4-hydroxy-3-nitrophenyl)acetyl-cholera toxin (NP-CT) conjugates were followed at the cellular and molecular level. Surprisingly, these responses were highly synchronized, strongly oligoclonal, and dominated by affinity matured cells. Extensive lineage trees revealed clonal relationships between NP-specific IgA cells in gut inductive and effector sites, suggesting expansion of the same B-cell clone in multiple Peyers patches (PPs). Adoptive transfer experiments showed that this was achieved through re-utilization of already existing germinal centers (GCs) in multiple PPs by previously activated GC GL7+ B cells, provided oral NP-CT was given before cell transfer. Taken together, these results explain why repeated oral immunizations are mandatory for an effective oral vaccine.


Mucosal Immunology | 2010

Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins

Nils Lycke; Mats Bemark

The ultimate goal for vaccination is to stimulate protective immunological memory. Protection against infectious diseases not only relies on the magnitude of the humoral immune response, but more importantly on the quality and longevity of it. Adjuvants are critical components of most non-living vaccines. Although little attention has been given to qualitative aspects of the choice of vaccine adjuvant, emerging data demonstrate that this function may be central to vaccine efficacy. In this review we describe efforts to understand more about how adjuvants influence qualitative aspects of memory development. We describe recent advances in understanding how vaccines induce long-lived plasma and memory B cells, and focus our presentation on the germinal center reaction. As mucosal vaccination requires powerful adjuvants, we have devoted much attention to the adenosine diphosphate (ADP)-ribosylating cholera toxin and the CTA1-DD adjuvants as examples of how mucosal adjuvants can influence induction of long-term memory.


Oncogene | 2000

The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt's lymphoma line.

Mats Bemark; Michael S. Neuberger

Burkitts lymphomas harbour chromosomal translocations bringing c-MYC into the vicinity of one of the immunoglobulin gene loci. Point mutations have been described within c-MYC in several Burkitts lymphomas and it has been proposed that translocation into the Ig loci might have transformed c-MYC into a substrate for the antibody hypermutation mechanism. Here we test this hypothesis by exploiting a Burkitts lymphoma line (Ramos) that we have previously shown to hypermutate its immunoglobulin genes constitutively. We find that, during in vitro culture, Ramos mutates the c-MYC allele that is translocated into the IgH locus whilst leaving the untranslocated c-MYC and other control genes essentially unaffected. The mutations are introduced downstream of the c-MYC transcription start with the pattern of substitutions being characteristic of the antibody hypermutation mechanism; the mutation frequency is 2–3-fold lower than for the endogenous functional IgH allele. Thus chromosomal translocations involving the Ig loci may not only contribute to transformation by deregulating oncogene expression but could also act by potentiating subsequent oncogene hypermutation.

Collaboration


Dive into the Mats Bemark's collaboration.

Top Co-Authors

Avatar

Nils Lycke

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Neuberger

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian E. Sale

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Mattsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge