Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mats Dynesius is active.

Publication


Featured researches published by Mats Dynesius.


Science | 1994

Fragmentation and Flow Regulation of River Systems in the Northern Third of the World

Mats Dynesius; Christer Nilsson

Seventy-seven percent of the total water discharge of the 139 largest river systems in North America north of Mexico, in Europe, and in the republics of the former Soviet Union is strongly or moderately affected by fragmentation of the river channels by dams and by water regulation resulting from reservoir operation, interbasin diversion, and irrigation. The remaining free-flowing large river systems are relatively small and nearly all situated in the far north, as are the 59 medium-sized river systems of Norway, Sweden, Finland, and Denmark. These conditions indicate that many types of river ecosystems have been lost and that the populations of many riverine species have become highly fragmented. To improve the conservation of biodiversity and the sustainable use of biological resources, immediate action is called for to create an international preservation network of free-flowing river systems and to rehabilitate exploited rivers in areas that lack unaffected watercourses.


Ecological Applications | 2000

EFFECTS OF RIVER REGULATION ON RIVER‐MARGIN VEGETATION: A COMPARISON OF EIGHT BOREAL RIVERS

Roland Jansson; Christer Nilsson; Mats Dynesius; Elisabet Andersson

Regulation and fragmentation by dams belong to the most widespread deliberate impacts of humans on the worlds rivers, especially in the Northern Hemisphere. We evaluated the effects of hydroelectr ...


Journal of Ecology | 1994

A Comparison of Species Richness and Traits of Riparian Plants between a Main River Channel and Its Tributaries

Christer Nilsson; Alf Ekblad; Mats Dynesius; Susanne Backe; Maria Gardfjell; Björn Carlberg; Sven Hellqvist; Roland Jansson

Summary1 We examined differences in species richness and frequencies of vascular plants in the riverbank vegetation between the main channel of the Vindel River system and seven of its tributaries ...


Ecosystems | 2005

Plant Species Numbers Predicted by a Topography-based Groundwater Flow Index

Ursula Zinko; Jan Seibert; Mats Dynesius; Christer Nilsson

The lack of a clear understanding of the factors governing the often-great variation of species numbers over entire landscapes confounds attempts to manage biodiversity. We hypothesized that in a topographically variable boreal forest landscape the availability of shallow groundwater is a major determinant of plant species numbers. We then developed a topographically derived hydrologic index based on multidirectional flow algorithms to account for the variation in availability of such groundwater in the landscape. We found a positive correlation between species numbers of vascular plants in plots ranging from 0.01 to 200 m2 and the hydrologic index. Generally, the landscape was relatively dry and species-poor, but interspersed patches with shallow groundwater had high species numbers and high proportions of regionally uncommon plant species. The index explained 30% of the variation in vascular plant number and correlated quite well (rs = 0.50) with groundwater level, but not as well with a community H+ concentration value (instead of community pH, rs = −0.31), based on species composition. In addition, we found a very strong correlation between species number and the community H+ concentration value (rs −0.84). The hydrologic index is a useful tool for the identification of spatial of species number patterns across entire landscapes. This is an important step in identifying the areas most in need of protection or restoration, designing survey techniques, and understanding the fundamental processes that control the spatial distribution of species.


Global Change Biology | 2013

Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

Jonathan Lenoir; Bente J. Graae; Per Arild Aarrestad; Inger Greve Alsos; W. Scott Armbruster; Gunnar Austrheim; Claes Bergendorff; H. John B. Birks; Kari Anne Bråthen; Jörg Brunet; Hans Henrik Bruun; Carl Johan Dahlberg; Guillaume Decocq; Martin Diekmann; Mats Dynesius; Rasmus Ejrnæs; John-Arvid Grytnes; Kristoffer Hylander; Kari Klanderud; Miska Luoto; Ann Milbau; Mari Moora; Bettina Nygaard; Arvid Odland; Virve Ravolainen; Stefanie Reinhardt; Sylvi M. Sandvik; Fride Høistad Schei; James D. M. Speed; Liv Unn Tveraabak

Recent studies from mountainous areas of small spatial extent (<2500 km(2) ) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m(2) units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km(2) units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km(2) units. Ellenberg temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km(2) units was, on average, 1.8 times greater (0.32 °C km(-1) ) than spatial turnover in growing-season GiT (0.18 °C km(-1) ). We conclude that thermal variability within 1-km(2) units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.


Ecological Applications | 2005

SUBSTRATE FORM DETERMINES THE FATE OF BRYOPHYTES IN RIPARIAN BUFFER STRIPS

Kristoffer Hylander; Mats Dynesius; I Bengt Gunnar Jonsson; Christer Nilsson

Studies on the effectiveness of forest buffer strips left along streams after logging have long overlooked the biota of the buffers themselves, despite their high species richness. We investigated mosses and liverworts (bryophytes), abundant and species-rich groups in boreal forests, before and 2.5 years after logging along 15 small streams. In each site, two 1000-m 2 (20 3 50 m) plots along the stream were inventoried; one plot in an area subjected to clear-cutting, and another in a buffer strip (10 m wide on each side of the stream). Ten plots along small streams in forest reserves in the same region were used as references. We found that less than half as many bryophyte species per plot disappeared after logging in the buffer strips compared to the clearcuts. The changes in bryophyte cover and in species composition were smaller in the buffer strips, and the species that were negatively affected in the clearcuts were less affected in the buffer strips. However, there was a significant change in species composition in the buffer strips compared to the ref- erences. Substrate form and taxonomic group were important factors in understanding this turnover. Many species growing on substrates with a convex form (e.g., logs, tree bases, and mesic ground) decreased or disappeared, while species on concave substrates were rather unaffected. This held for both mosses and liverworts, although liverworts were generally more sensitive than mosses. The difference in response of assemblages on convex vs. concave substrates makes changes in microclimate due to logging a likely explanation. The species in most need of protection (i.e., the red-listed species) were among the ones with strongest declines in the 20 m wide buffer strips. In order to function optimally for bryophyte conservation, forests along small streams need to be protected from high wind- throw frequency and strong edge effects. Increasing the width of buffer strips at sites with known or potential values (e.g., large amounts of woody debris or boulders) should be considered a better strategy than using narrow buffer strips with a fixed width.


Ecological Applications | 2010

Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity.

Fredrik Stenbacka; Joakim Hjältén; Jacek Hilszczański; Mats Dynesius

Current clear-cutting forestry practices affect many boreal organisms negatively, and those dependent on dead wood (saproxylics) are considered as particularly vulnerable. The succession of species assemblages in managed forest habitats regenerating after clear-cutting is, however, poorly known. We compared beetle assemblages in three successional stages of managed boreal spruce forests established after clear-cutting and two types of older spruce forests that had not been clear-cut. We also assessed whether saproxylic and non-saproxylic beetle assemblages show similar biodiversity patterns among these forest types. Beetles were collected in window traps in nine study areas, each encompassing a protected old-growth forest (mean forest age approximately 160 years, mean dead wood volume 34 m3/ha), an unprotected mature forest (approximately 120 years old, 15 m3/ha), a middle-aged commercially thinned forest (53 years old, 3 m3/ha), a young unthinned forest (30 years old, 4 m3/ha), and a clearcut (5-7 years after harvest, 11 m3/ha). Saproxylic beetles, in particular red-listed species, were more abundant and more species rich in older forest types, whereas no significant differences among forest types in these variables were detected for non-saproxylics. The saproxylic assemblages were clearly differentiated; with increasing forest age, assemblage compositions gradually became more similar to those of protected old-growth forests, but the assemblage composition in thinned forests could not be statistically distinguished from those of the two oldest forest types. Many saproxylic beetles adapted to late-successional stages were present in thinned middle-aged forests but absent from younger unthinned forests. In contrast, non-saproxylics were generally more evenly distributed among the five forest types, and the assemblages were mainly differentiated between clearcuts and forested habitats. The saproxylic beetle assemblages of unprotected mature forests were very similar to those of protected old-growth forests. This indicates a relatively high conservation value of mature boreal forests currently subjected to clear-cutting and raises the question of whether future mature forests will have the same qualities. Our results suggest a high beetle conservation potential of developing managed forests, provided that sufficient amounts and qualities of dead wood are made available (e.g., during thinning operations). Confirming studies of beetle reproduction in dead wood introduced during thinning are, however, lacking.


Ecology | 2007

SLOPE ASPECT MODIFIES COMMUNITY RESPONSES TO CLEAR-CUTTING IN BOREAL FORESTS

Marcus Åström; Mats Dynesius; Kristoffer Hylander; Christer Nilsson

Slope aspect modifies microclimate and influences ecological processes and spatial distribution of species across forest landscapes, but the impact of slope aspect on community responses to disturbance is poorly understood. Such insight is necessary to understand landscape community dynamics and resilience. We compared bryophyte (liverworts and mosses) communities in matched 0.02-ha plots of four boreal stand types in central Sweden: recently clear-felled and mature stands dominated by Norway spruce in south-facing and north-facing slopes. Differences between forests and clear-cuts were interpreted as effects of clear-cutting, and differences between south- and north-facing slopes as effects of aspect. In response to clear-cutting, bryophyte cover and composition changed more in south-facing slopes. Only one out of ten significantly declining species in south-facing slopes also declined significantly in north-facing slopes. North-facing slopes lost fewer bryophyte species, and among those, fewer forest species and fewer species associated with wood and bark. In north-facing slopes, the average proportions of mosses and liverworts shared between the forest and the clear-cut plot were 88% and 74%, respectively. Corresponding numbers for south-facing slopes were 79% and 33%. In addition, more bryophyte species were added in north- than south-facing slopes after clear-cutting, somewhat reducing the difference in compositional change between aspects. South- and north-facing mature forests differed in species composition, mostly due to higher richness of mosses in south-facing slopes. The smaller changes in bryophyte communities on north-facing slopes in response to clear-cutting have implications for ecosystem dynamics and management as high local survival may enhance landscape-level resilience.


Ecology | 2009

High resilience of bryophyte assemblages in streamside compared to upland forests

Mats Dynesius; Kristoffer Hylander; Christer Nilsson

Landscape heterogeneity causes spatial variation in disturbance regimes and resilience. We asked whether the resilience of bryophyte (liverwort and moss) assemblages to clear-cutting differs between streamside and upland boreal forests in northern Sweden. We hypothesized that bryophyte survival and recolonization rates are higher in streamside areas, thus raising resilience. Conversely, disturbance-intolerant but also invading species should be more frequent here, potentially reducing resilience. In each of 18 sites, we compared two 0.1-ha plots (one streamside and one upland) located in old forest that had never been clear-cut with two matching plots in young stands established after clear-cutting of old forests 30-50 years earlier. We used the magnitude of the difference in assemblages between old and young stands as a measure of change and, therefore, resilience (large difference implying low resilience). Species assemblages were more resilient in streamside than in upland forests. Species composition changed significantly in upland but not in streamside forests. Reductions in species richness were more pronounced in upland forests for total richness and for eight subgroups of species. Two results indicated lower survival/recolonization in upland forests: (1) species had a stronger association with old stands in upland areas, and (2) among species present in both the old streamside and old upland plot in a site, fewer appeared in the young upland than in the corresponding streamside plot. Simultaneously, a higher proportion of species invaded streamside areas; 40 of the 262 species encountered in streamside forests increased their occupancy by two or more sites compared to only two of 134 species in uplands. We suggest that in boreal forests spatial variation in resilience of assemblages of forest organisms intolerant of canopy removal is related to factors governed mainly by topography. More generally, we argue that landscape-scale variation in resilience of assemblages is influenced by spatial variation in (1) stress and resource availability, (2) number of disturbance-intolerant species, and (3) magnitude of environmental changes brought about by a disturbance with a specific intensity. We also suggest that rapid recovery in the short term does not necessarily imply higher long-term ability to return to the pre-disturbance state.


Ecological Applications | 2004

Intercontinental similarities in riparian-plant diversity and sensitivity to river regulation.

Mats Dynesius; Roland Jansson; Mats E. Johansson; Christer Nilsson

We asked whether assemblages of species with separate evolutionary his- tories differed in their response to similar human interventions. We assessed this by com- paring the response of riparian plant communities to river regulation on two different continents. We compared free-flowing and regulated rivers between boreal parts of North America (Alberta and British Columbia) and Europe (Sweden), using a standardized sam- pling protocol and the same field staff on both continents. Although the two regions shared few species, both riparian plant-species diversity along free-flowing rivers and the response to different kinds of flow regulation were similar between the continents. The number of riparian-plant species and their amount of cover differed among types of water-level regime, but the continental affiliation of a river-margin site did not statistically explain any of the variation. Within continents, the local flora of the regulated river-margin sites was largely similar in species composition to the free-flowing ones, but the sites along storage reservoirs were more species-poor. The similarity in the response to regulation between the continents suggests that general guidelines for rehabilitation of degraded boreal rivers are a realistic goal. The number of species and genera, plant cover, and species numbers in most trait groups (classified according to growth form and life span) were similar between free-flowing river margins in Europe and North America. Moreover, the regional native species pools of northern Sweden and Alberta were similar in size and composition of species groups, despite the fact that only 27% of the species in Alberta were found in northern Sweden. This is presumably because the floras share a common Tertiary origin and because the regions have had largely similar late-Tertiary and Quaternary histories. The most pronounced difference between the continents was that we found no exotic species on the 183 Swedish river- margin sites, whereas 9% of the species found in all 24 North American plots taken together were exotics. All North American exotics found have occurred in Europe since prehistoric times, and the difference in exotic richness most likely reflects a difference in the number of species humans have transferred from one continent to another, rather than a difference in invasibility between the regions.

Collaboration


Dive into the Mats Dynesius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joakim Hjältén

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Michel Roberge

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Jon Andersson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Therese Johansson

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge