Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mats Ljungman is active.

Publication


Featured researches published by Mats Ljungman.


Oncogene | 1999

Inhibition of RNA polymerase II as a trigger for the p53 response

Mats Ljungman; Fenfen Zhang; Feng Chen; Andrew J. Rainbow; Bruce C. McKay

The mechanisms by which the p53 response is triggered following exposure to DNA-damaging agents have not yet been clearly elucidated. We and others have previously suggested that blockage of RNA polymerase II may be the trigger for induction of the p53 response following exposure to ultraviolet light. Here we report on the correlation between inhibition of mRNA synthesis and the induction of p53, p21WAF1 and apoptosis in diploid human fibroblasts treated with either UV light, cisplatin or the RNA synthesis inhibitors actinomycin D, DRB, H7 and α-amanitin. Exposure to ionizing radiation or the proteasome inhibitor LLnL, however, induced p53 and p21WAF1 without affecting mRNA synthesis. Importantly, induction of p53 by the RNA synthesis or proteasome inhibitors did not correlate with the induction of DNA strand breaks. Furthermore, cisplatin-induced accumulation of active p53 in repair-deficient XP-A cells occurred despite the lack of DNA strand break induction. Our results suggest that the induction of the p53 response by certain toxic agents is not triggered by DNA strand breaks but rather, may be linked to inhibition of mRNA synthesis either directly by the poisoning of RNA polymerase II or indirectly by the induction of elongation-blocking DNA lesions.


Cancer Cell | 2009

Oncogenic Function of ATDC in Pancreatic Cancer through Wnt Pathway Activation and β-Catenin Stabilization

Lidong Wang; David G. Heidt; Cheong J. Lee; Huibin Yang; Craig D. Logsdon; Lizhi Zhang; Eric R. Fearon; Mats Ljungman; Diane M. Simeone

Pancreatic cancer is a deadly disease characterized by late diagnosis and resistance to therapy. Much progress has been made in defining gene defects in pancreatic cancer, but a full accounting of its molecular pathogenesis remains to be provided. Here, we show that expression of the ataxia-telangiectasia group D complementing gene (ATDC), also called TRIM29, is elevated in most invasive pancreatic cancers and pancreatic cancer precursor lesions. ATDC promoted cancer cell proliferation in vitro and enhanced tumor growth and metastasis in vivo. ATDC expression correlated with elevated beta-catenin levels in pancreatic cancer, and beta-catenin function was required for ATDCs oncogenic effects. ATDC was found to stabilize beta-catenin via ATDC-induced effects on the Disheveled-2 protein, a negative regulator of glycogen synthase kinase 3beta in the Wnt/beta-catenin signaling pathway.


Molecular and Cellular Biology | 2009

Histone Ubiquitination Associates with BRCA1-Dependent DNA Damage Response

Jiaxue Wu; Michael S.Y. Huen; Lin Yu Lu; Lin Ye; Yali Dou; Mats Ljungman; Junjie Chen; Xiaochun Yu

ABSTRACT Histone ubiquitination participates in multiple cellular processes, including the DNA damage response. However, the molecular mechanisms involved are not clear. Here, we have identified that RAP80/UIMC1 (ubiquitin interaction motif containing 1), a functional partner of BRCA1, recognizes ubiquitinated histones H2A and H2B. The interaction between RAP80 and ubiquitinated histones H2A and H2B is increased following DNA damage. Since RAP80 facilitates BRCA1s translocation to DNA damage sites, our results indicate that ubiquitinated histones H2A and H2B could be upstream partners of the BRCA1/RAP80 complex in the DNA damage response. Moreover, we have found that RNF8 (ring finger protein 8), an E3 ubiquitin ligase, regulates ubiquitination of both histones H2A and H2B. In RNF8-deficient mouse embryo fibroblasts, ubiquitination of both histones H2A and H2B is dramatically reduced, which abolishes the DNA damage-induced BRCA1 and RAP80 accumulation at damage lesions on the chromatin. Taken together, our results suggest that ubiquitinated histones H2A and H2B may recruit the BRCA1 complex to DNA damage lesions on the chromatin.


Oncogene | 1998

Persistent DNA damage induced by ultraviolet light inhibits p21waf1 and bax expression : implications for DNA repair, uv sensitivity and the induction of apoptosis

Bruce C. McKay; Mats Ljungman; Andrew J. Rainbow

Ultraviolet light (UV) induced DNA lesions efficiently block transcript elongation and induce the p53 response. Although p53 contributes to transcriptional activation of the p21waf1 and bax genes, accumulation of these proteins requires that these genes are free of UV induced pyrimidine dimers. We assessed the level of expression of p53 and the p53 regulated p21waf1 and bax gene products in normal diploid fibroblasts (NDF) and several nucleotide excision repair deficient fibroblasts following UV-irradiation. At low UV fluences, increased expression of p53, p21waf1 and bax was only observed in fibroblasts deficient in transcription coupled repair (TCR). Whereas p53 protein levels increased in all cell types at high UV fluences, p21waf1 levels initially decreased and then recovered in a manner dependent on TCR. At later times, expression of p21waf1 and bax was only elevated in TCR-proficient cells. The lack of TCR strongly correlated with an enhanced induction of apoptosis. Furthermore, we assessed the effect of modulation of the p53/p21waf1/pRb pathway on clonogenic survival following UV irradiation. Expression of E2F-1, E2F-4, and the large tumour antigens of SV40 and Polyomavirus conferred UV sensitivity to NDF whereas p21waf1 protected cells against UV treatment. We propose that the fluence dependent attenuation of protective functions of p53 by blockage of transcription favours apoptosis following UV exposure.


Proceedings of the National Academy of Sciences of the United States of America | 2007

RPA and ATR link transcriptional stress to p53

Frederick A. Derheimer; Heather M. O'Hagan; Heather Krueger; Sheela Hanasoge; Michelle T. Paulsen; Mats Ljungman

The mechanisms by which DNA-damaging agents trigger the induction of the stress response protein p53 are poorly understood but may involve alterations of chromatin structure or blockage of either transcription or replication. Here we show that transcription-blocking agents can induce phosphorylation of the Ser-15 site of p53 in a replication-independent manner. Furthermore, microinjection of anti-RNA polymerase II antibodies into the nuclei of cells showed that blockage of transcription is sufficient for p53 accumulation even in the absence of DNA damage. This induction of p53 occurs by two independent mechanisms. First, accumulation of p53 is linked to diminished nuclear export of mRNA; and second, inhibition specifically of elongating RNA polymerase II complexes results in the phosphorylation of the Ser-15 site of p53 in a replication protein A (RPA)- and ATM and Rad3-related (ATR)-dependent manner. We propose that this transcription-based stress response involving RPA, ATR, and p53 has evolved as a DNA damage-sensing mechanism to safeguard cells against DNA damage-induced mutagenesis.


Oncogene | 2001

P53 plays a protective role against UV- and cisplatin-induced apoptosis in transcription-coupled repair proficient fibroblasts

Bruce C. McKay; Cecilia Becerril; Mats Ljungman

We previously reported that transcription-coupled repair (TCR)-deficient human fibroblasts are extremely sensitive to UV-induced apoptosis and this sensitivity correlated with the induction of the p53 tumour suppressor. However, we have also found that p53 can be protective against UV-induced apoptosis. Thus, prior to this study, it was not clear whether the induction of p53 in TCR-deficient fibroblasts contributed to their death. To address this issue, we have expressed human papillomavirus E6 (HPV-E6) in primary fibroblasts derived from patients affected with xeroderma pigmentosum (complementation groups A, B and C) and Cockayne syndrome (complementation group B). We found that TCR-deficient (XP-A, XP-B and CS-B) fibroblasts were more sensitive than TCR-proficient cells (XP-C and normal) to both UV light and cisplatin treatment and this increase in sensitivity was not p53 dependent. Importantly, HPV-E6 expression increased the sensitivity of TCR-proficient normal and XP-C fibroblasts to UV- and cisplatin-induced apoptosis. This increase in sensitivity correlated with a decrease in the capacity of HPV-E6 expressing cells to recover mRNA synthesis following UV-irradiation. Therefore, we propose that p53 protects against UV- and cisplatin-induced apoptosis in a TCR-dependent manner and that p53 does not contribute strongly to the induction of apoptosis in TCR-deficient fibroblasts.


Neoplasia | 2014

The Long Non-Coding RNA PCAT-1 Promotes Prostate Cancer Cell Proliferation through cMyc

John R. Prensner; Wei Chen; Sumin Han; Matthew K. Iyer; Qi Cao; Vishal Kothari; Joseph R. Evans; Karen E. Knudsen; Michelle T. Paulsen; Mats Ljungman; Theodore S. Lawrence; Arul M. Chinnaiyan; Felix Y. Feng

Long non-coding RNAs (lncRNAs) represent an emerging layer of cancer biology, contributing to tumor proliferation, invasion, and metastasis. Here, we describe a role for the oncogenic lncRNA PCAT-1 in prostate cancer proliferation through cMyc. We find that PCAT-1–mediated proliferation is dependent on cMyc protein stabilization, and using expression profiling, we observed that cMyc is required for a subset of PCAT-1–induced expression changes. The PCAT-1–cMyc relationship is mediated through the post-transcriptional activity of the MYC 3′ untranslated region, and we characterize a role for PCAT-1 in the disruption of MYC-targeting microRNAs. To further elucidate a role for post-transcriptional regulation, we demonstrate that targeting PCAT-1 with miR-3667-3p, which does not target MYC, is able to reverse the stabilization of cMyc by PCAT-1. This work establishes a basis for the oncogenic role of PCAT-1 in cancer cell proliferation and is the first study to implicate lncRNAs in the regulation of cMyc in prostate cancer.


Genome Research | 2014

Rate of elongation by RNA polymerase II is associated with specific gene features and epigenetic modifications

Artur Veloso; Killeen S. Kirkconnell; Brian Magnuson; Benjamin Biewen; Michelle T. Paulsen; Thomas E. Wilson; Mats Ljungman

The rate of transcription elongation plays an important role in the timing of expression of full-length transcripts as well as in the regulation of alternative splicing. In this study, we coupled Bru-seq technology with 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) to estimate the elongation rates of over 2000 individual genes in human cells. This technique, BruDRB-seq, revealed gene-specific differences in elongation rates with a median rate of around 1.5 kb/min. We found that genes with rapid elongation rates showed higher densities of H3K79me2 and H4K20me1 histone marks compared to slower elongating genes. Furthermore, high elongation rates had a positive correlation with gene length, low complexity DNA sequence, and distance from the nearest active transcription unit. Features that negatively correlated with elongation rate included the density of exons, long terminal repeats, GC content of the gene, and DNA methylation density in the bodies of genes. Our results suggest that some static gene features influence transcription elongation rates and that cells may alter elongation rates by epigenetic regulation. The BruDRB-seq technique offers new opportunities to interrogate mechanisms of regulation of transcription elongation.


Nature Structural & Molecular Biology | 2011

Chfr and RNF8 synergistically regulate ATM activation.

Jiaxue Wu; Yibin Chen; Lin Yu Lu; Yipin Wu; Michelle T. Paulsen; Mats Ljungman; David O. Ferguson; Xiaochun Yu

Protein ubiquitination is a crucial component of the DNA damage response. To study the mechanism of the DNA damage–induced ubiquitination pathway, we analyzed the impact of the loss of two E3 ubiquitin ligases, RNF8 and Chfr. Notably, DNA damage–induced activation of ATM kinase is suppressed in cells deficient in both RNF8 and Chfr (double-knockout, or DKO), and DKO mice develop thymic lymphomas that are nearly diploid but harbor clonal chromosome translocations. Moreover, DKO mice and cells are hypersensitive to ionizing radiation. We present evidence that RNF8 and Chfr synergistically regulate histone ubiquitination to control histone H4 Lys16 acetylation through MRG15-dependent acetyltransferase complexes. Through these complexes, RNF8 and Chfr affect chromatin relaxation and modulate ATM activation and DNA damage response pathways. Collectively, our findings demonstrate that two chromatin-remodeling factors, RNF8 and Chfr, function together to activate ATM and maintain genomic stability in vivo.


Oncogene | 2001

Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation

Mats Ljungman; Heather M. O'Hagan; Michelle T. Paulsen

Blockage of transcription has been shown to induce the tumor suppressor p53 in human cells. We here show that RNA synthesis inhibitors blocking the phosphorylation of the carboxyl terminal domain (CTD) of RNA polymerase II, such as DRB and H7, induced rapid nuclear accumulation of p53 proteins that were not phosphorylated at ser15 or acetylated at lys382. In contrast, agents that inhibit the elongation phase of transcription, such as UV light, camptothecin or actinomycin D, induced the accumulation of nuclear p53 proteins that were modified at both of these sites. Furthermore, using a panel of DNA repair-deficient cells we show that persistent DNA lesions in the transcribed strand of active genes are responsible for the induction of the ser15 and lys382 modifications following UV-irradiation. We conclude that inhibition of transcription is sufficient for the accumulation of p53 in the nucleus regardless of whether the ser15 site of p53 is phosphorylated or not. Importantly, blockage of the elongation phase of transcription triggers a distinct signaling pathway leading to p53 modifications on ser15 and lys382. We propose that the elongating RNA polymerase complex may act as a sensor of DNA damage and as an integrator of cellular stress signals.

Collaboration


Dive into the Mats Ljungman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lidong Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huibin Yang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge