Mats Wedin
Swedish Museum of Natural History
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mats Wedin.
Systematic Biology | 2008
Stefan Ekman; Heidi Lie Andersen; Mats Wedin
Ancestral state reconstructions of morphological or ecological traits on molecular phylogenies are becoming increasingly frequent. They rely on constancy of character state change rates over trees, a correlation between neutral genetic change and phenotypic change, as well as on adequate likelihood models and (for Bayesian methods) prior distributions. This investigation explored the outcomes of a variety of methods for reconstructing discrete ancestral state in the ascus apex of the Lecanorales, a group containing the majority of lichen-forming ascomycetes. Evolution of this character complex has been highly controversial in lichen systematics for more than two decades. The phylogeny was estimated using Bayesian Markov chain Monte Carlo inference on DNA sequence alignments of three genes (small subunit of the mitochondrial rDNA, large subunit of the nuclear rDNA, and largest subunit of RNA polymerase II). We designed a novel method for assessing the suitable number of discrete gamma categories, which relies on the effect on phylogeny estimates rather than on likelihoods. Ancestral state reconstructions were performed using maximum parsimony and maximum likelihood on a posterior tree sample as well as two fully Bayesian methods. Resulting reconstructions were often strikingly different depending on the method used; different methods often assign high confidence to different states at a given node. The two fully Bayesian methods disagree about the most probable reconstruction in about half of the nodes, even when similar likelihood models and similar priors are used. We suggest that similar studies should use several methods, awaiting an improved understanding of the statistical properties of the methods. A Lecanora-type ascus may have been ancestral in the Lecanorales. State transformations counts, obtained using stochastic mapping, indicate that the number of state changes is 12 to 24, which is considerably greater than the minimum three changes needed to explain the four observed ascus apex types. Apparently, the ascus in the Lecanorales is far more apt to change than has been recognized. Phylogeny corresponds well with morphology, although it partly contradicts currently used delimitations of the Crocyniaceae, Haematommataceae, Lecanoraceae, Megalariaceae, Mycoblastaceae, Pilocarpaceae, Psoraceae, Ramalinaceae, Scoliciosporaceae, and Squamarinaceae.
Fungal Biology | 2005
Mats Wedin; Elisabeth Wiklund; Anna T. Crewe; Heidi Döring; Stefan Ekman; Åsa Nyberg; Imke Schmitt; H. Thorsten Lumbsch
The phylogeny of Lecanoromycetes (Ascomycota, Fungi) is investigated utilizing parsimony and Bayesian Markov Chain Monte Carlo analyses, of combined nLSU rDNA and mtSSU rDNA sequence datasets. The results suggest that Acarosporaceae, Candelariaceae, Phlyctis and Pycnora are not members of the monophyletic Lecanorales, and that Timdalia and Pleopsidium are members of a monophyletic Acarosporaceae. Pycnora, Candelariaceae and Acarosporaceae form a monophyletic group. Umbilicariaceae, Hypocenomyce scalaris, H. friesii, Ophioparmaceae, Boreoplaca, Elixia and Fuscidea form either a basal paraphyletic assemblage in Lecanoromycetes, or a monophyletic group which is the sister-group to Lecanorales and the rest of Lecanoromycetes (excluding Acarosporaceae). The Acarosporaceae forms a group with Pycnora and Candelariaceae, which may be outside the Lecanoromycetes. Chaetothyriales, Verrucariales, Eurotiales, Lichinales and Mycocaliciales form a monophyletic group, but with low support. We briefly discuss incongruence between datasets from different genetic markers, comparing the differences between the separate parsimony analyses, where the ILD test indicated a very significant incongruence. The phylogenetic significance of ascus-types that have influenced most recent Ascomycota classifications heavily is also discussed, and we finally point out risks with formalizing classifications too early.
PLOS ONE | 2013
Maria Prieto; Mats Wedin
Establishing the dates for the origin and main diversification events in the phylogeny of Ascomycota is among the most crucial remaining goals in understanding the evolution of Fungi. There have been several analyses of divergence times in the fungal tree of life in the last two decades, but most have yielded contrasting results for the origin of the major lineages. Moreover, very few studies have provided temporal estimates for a large set of clades within Ascomycota. We performed molecular dating to estimate the divergence times of most of the major groups of Ascomycota. To account for paleontological uncertainty, we included alternative fossil constraints as different scenarios to enable a discussion of the effect of selection of fossils. We used data from 6 molecular markers and 121 extant taxa within Ascomycota. Our various ‘relaxed clock’ scenarios suggest that the origin and diversification of the Pezizomycotina occurred in the Cambrian. The main lineages of lichen–forming Ascomycota originated at least as early as the Carboniferous, with successive radiations in the Jurassic and Cretaceous generating the diversity of the main modern groups. Our study provides new information about the timing of the main diversification events in Ascomycota, including estimates for classes, orders and families of both lichenized and non–lichenized Ascomycota, many of which had not been previously dated.
Fungal Biology | 2002
Kristina Articus; Jan-Eric Mattsson; Leif Tibell; Martin Grube; Mats Wedin
The lichens Usnea florida and U. subfloridana have since long been recognised as distinct species. They show many similarities in morphology, but have different reproductive strategies. Usnea flori ...
Molecular Phylogenetics and Evolution | 2011
Ana M. Millanes; Paul Diederich; Stefan Ekman; Mats Wedin
The Tremellomycetes (Agaricomycotina, Basidiomycota, Fungi) are a nutritionally heterogeneous group comprising saprotrophs, animal parasites, and fungicolous species (fungal-inhabiting, including lichen-inhabiting). The relationships of many species, particularly those with a lichenicolous habit, have never been investigated by molecular methods. We present a phylogeny of the Tremellomycetes based on three nuclear DNA ribosomal markers (nSSU, 5.8S and nLSU), representing all main taxonomic groups and life forms, including lichenicolous taxa. The Cystofilobasidiales, Filobasidiales, Holtermanniales, and Tremellales (including the Trichosporonales) are recovered as monophyletic, but this is not the case for the Tremellomycetes. We suggest, however, that the Cystofilobasidiales tentatively continue to be included in the Tremellomycetes. As currently circumscribed, the Filobasidiaceae, Sirobasidiaceae, Syzygosporaceae and Tremellaceae are non-monophyletic. Cuniculitremaceae, Sirobasidiaceae and Tetragoniomycetaceae are nested within Tremellaceae. The lichenicolous species currently included within the Tremellomycetes belong in this group, distributed across the Filobasidiales and Tremellales. Lichen-inhabiting taxa do not form a monophyletic group; they are distributed in several clades and sometimes intermixed with taxa of other nutritional habits. Character state reconstruction indicates that two morphological traits claimed to characterize groups in the Tremellomycetes (the basidium habit and basidium septation) are highly homoplastic. Comparative phylogenetic methods suggest that the transitions between single and catenulate basidia in the Tremellales are consistent with a punctuational model of evolution whereas basidium septation is likely to have evolved under a graduational model in the clade comprising the Holtermanniales, Filobasidiales, and Tremellales.
Cladistics | 2003
Elisabeth Wiklund; Mats Wedin
We present major cladistic analyses of the Lecanoromycetes (Ascomycota, Fungi) focusing on the Lecanorales suborder Peltigerineae, a group including the majority of the cyanobacterial lichens. DNA sequence datasets from the mtSSU and nLSU rDNA were produced and analyzed with maximum parsimony and parsimony jackknifing. The results suggest that the Lecanorales is monophyletic. The Peltigerineae (including Placynthiaceae, Peltigeraceae, Lobariaceae, Nephromataceae, Collemataceae, Coccocarpiaceae, Pannariaceae, and Massalongia) is likewise a monophyletic group. The Lobariaceae, and Lobaria in the traditional sense, are strongly supported as monophyletic, in contrast to results of other investigations based on nITS rDNA data. Pseudocyphellaria may be paraphyletic. Placynthiaceae is the sister group to the Collemataceae and Collema may be nested within Leptogium. Pannariaceae in the traditional sense is not a monophyletic group. Finally, the Lecanorineae is nonmonophyletic in all analyses, and the Cladoniineae and Teloschistineae are nested within the Lecanorineae in the combined analysis.
Taxon | 2002
Mats Wedin; Elisabeth Baloch; Martin Grube
The phylogenetic relationships of the lichenised families Caliciaceae and Physciaceae (Lecanorales, Ascomycota) are investigated with parsimony analyses of combined mtSSU and nITS rDNA sequences. Physciaceae include two well-supported groups, which correspond to the informally recognised “Buelliagroup” and “Physcia-group” . The prototunicate, mazaedia-forming representatives of Caliciaceae are derived from within Physciaceae, and fall within the “Buellia-group” . Nom enclatural consequences of two different scenarios of changes in the present classification are discussed.
Molecular Phylogenetics and Evolution | 2009
Mats Wedin; Elisabeth Wiklund; Per M. Jørgensen; Stefan Ekman
Many lichen fungi form symbioses with filamentous Nostoc cyanobacteria, which cause the lichen to swell and become extremely gelatinous when moist. Within the Lecanoromycetes, such gelatinous lichens are today mainly classified in the Collemataceae (Peltigerales, Ascomycota). We performed Bayesian MCMC, maximum likelihood, and maximum parsimony analyses of three independent markers (mtSSU rDNA, nuLSU rDNA, and RPB1), to improve our understanding of the phylogeny and classification in the Peltigerales, as well as the evolution of morphological characters that have been used for classification purposes in this group. The Collemataceae and the non-gelatinous Pannariaceae are paraphyletic but can be re-circumscribed as monophyletic if Leciophysma, Physma, Ramalodium and Staurolemma are transferred to the Pannariaceae. The gelatinous taxa transferred to the Pannariaceae deviate from other Collemataceae in having simple ascospores, and several also have a ring-shaped exciple as in other Pannariaceae, rather than the disc-shaped exciple found in the typical Collemataceae. Both Collema and Leptogium are non-monophyletic. The re-circumscribed Collemataceae shares a distinct ascus type with the sister group Placynthiaceae and the Coccocarpiaceae, whereas Pannariaceae includes a variety of structures. All Pannariaceae have one-celled ascospores, whereas all Collemataceae have two- or multi-celled spores. Reconstructions of the number of character state transformations in exciple structure, thallus gelatinosity, and ascus apex structure indicate that the number of transformations is distinctly higher than the minimum possible. Most state transformations in the exciple took place from a ring-shaped to a disc-shaped exciple. Depending on the reconstruction method, most or all transformations in thallus structure took place from a non-gelatinous to a gelatinous thallus. Gains and losses of internal structures in the ascus apex account for all or a vast majority of the number of transformations in the ascus, whereas direct transformations between asci with internal structures appear to have been rare.
Mycologia | 2000
Leif Tibell; Mats Wedin
The new order Mycocaliciales is described. It includes the nonlichenized Mycocaliciaceae and Sphinctrinaceae, which occur as saprobes or commensals on lichens. They are further characterized by having stalked or sessile ascomata consisting of sclerotized,
Plant Systematics and Evolution | 1998
Mats Wedin; Anders Tehler; Andrea Gargas
SSU rDNA was sequenced from the lichenized fungiBunodophoron scrobiculatum andLeifidium tenerum (Sphaerophoraceae), andStereocaulon ramulosum andPilophorus acicularis (Stereocaulaceae) and analysed by maximum parsimony with 44 homologous ascomycete sequences in a cladistic study. A small insertion (c. 60 nt.) was found in the sequence ofLeifidium tenerum. Sphaerophoraceae constitutes a strongly supported monophyletic group which groups together withLecanora dispersa and theStereocaulaceae. Together withPorpidia crustulata, this larger group is a sistergroup to thePeltigerineae. This analysis thus supports theLecanorales as monophyletic, includingSphaerophoraceae and thePeltigerineae, but does not provide strong support for this monophyly. The analysis also suggests that the prototunicate ascus in theSphaerophoraceae is a reversion to the plesiomorphic state. Based on morphological, anatomical and chemical reasons,Sphaerophoraceae is proposed to belong to one of the groups presently included in the paraphyletic suborderCladoniineae within theLecanorales.