Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mats X. Andersson is active.

Publication


Featured researches published by Mats X. Andersson.


The Arabidopsis Book | 2010

Acyl-Lipid Metabolism

Younghua Li-Beisson; Basil S. Shorrosh; Fred Beisson; Mats X. Andersson; Vincent Arondel; Philip D. Bates; Sébastien Baud; David McK. Bird; Allan DeBono; Timothy P. Durrett; Rochus Franke; Ian Graham; Kenta Katayama; Amélie A. Kelly; Tony R. Larson; Jonathan E. Markham; Martine Miquel; Isabel Molina; Ikuo Nishida; Owen Rowland; Lacey Samuels; Katherine M. Schmid; Hajime Wada; Ruth Welti; Changcheng Xu; Rémi Zallot; John B. Ohlrogge

Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.


FEBS Letters | 2003

Phosphate‐deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol

Mats X. Andersson; Malin H. Stridh; Karin Larsson; Conny Liljenberg; Anna Stina Sandelius

The plasma membranes of oat normally resemble those of other eukaryotes in containing mainly phospholipids and sterols. We here report the novel finding that the galactolipid digalactosyldiacylglycerol (DGDG) can constitute a substantial proportion of oat plasma membrane lipids, in both shoots and roots. When oat was cultivated under severe phosphate limitation, up to 70% of the plasma membrane phosphoglycerolipids were replaced by DGDG. Our finding not only reflects a far more developed potential for plasticity in plasma membrane lipid composition than often assumed, but also merits interest in the context of the limited phosphate availability in many soils.


Journal of Neurology | 1993

Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study

Oluf Andersen; Per-Erik Lygner; Tomas Bergström; Mats X. Andersson; Anders Vablne

A neurological surveillance was combined with prospective recording of upper respiratory and gastrointestinal infections and serological diagnosis of five common viral infections in 60 benign multiple sclerosis patients, with a mean follow-up of 31 months. During 4-week at risk (AR) periods encompassing common infections, a significant excess of MS relapses was found in the AR period, with a relative risk of 1.3. A seasonal variation of the MS relapse rate was found with a minimum in summer. There was a significant correlation between the number of AR relapses and the number of common infections per month explaining the periannual distribution of relapses. The non-AR relapses showed no seasonal variation. There was a significant correlation between adenovirus CF titre rises associated with upper respiratory infections and the occurrence of a major MS relapse in the AR period (n = 7), while influenza infections were not followed by a major MS relapse (n = 6). Linear homologies have been demonstrated between adenovirus and basic myelin protein. The epidemiological approach is essential to our understanding of systemic antigens triggering multiple sclerosis activity.


Journal of Biological Chemistry | 2005

Phosphate-limited Oat THE PLASMA MEMBRANE AND THE TONOPLAST AS MAJOR TARGETS FOR PHOSPHOLIPID-TO-GLYCOLIPID REPLACEMENT AND STIMULATION OF PHOSPHOLIPASES IN THE PLASMA MEMBRANE

Mats X. Andersson; Karin Larsson; Henrik Tjellström; Conny Liljenberg; Anna Stina Sandelius

We recently reported that cultivation of oat (Avena sativa L.) without phosphate resulted in plasma membrane phosphoglycerolipids being replaced to a large extent by digalactosyldiacylglycerol (DGDG) (Andersson, M. X., Stridh, M. H., Larsson, K. E., Liljenberg, C., and Sandelius, A. S. (2003) FEBS Lett. 537, 128–132). We report here that DGDG is not the only non-phosphorous-containing lipid that replaces phospholipids but that also the content of glucosylceramides and sterolglycosides increased in plasma membranes as a response to phosphate starvation. In addition, phosphate deficiency induced similar changes in lipid composition in the tonoplast. The phospholipid-to-glycolipid replacement apparently did not occur to any greater extent in endoplasmic reticulum, Golgi apparatus, or mitochondrial inner membranes. In contrast to the marked effects on lipid composition, the polypeptide patterns were largely similar between root plasma membranes from well-fertilized and phosphate-limited oat, although the latter condition induced at least four polypeptides, including a chaperone of the HSP80 or HSP90 family, a phosphate transporter, and a bacterial-type phosphoesterase. The latter polypeptide reacted with an antibody raised against a phosphate deficiency-induced phospholipase C from Arabidopsis thaliana (Nakamura, Y., Awai, K., Masuda, T., Yoshioka, Y., Takamiya, K., and Ohta, H. (2005) J. Biol. Chem. 280, 7469–7476). In plasma membranes from oat, however, a phospholipase D-type activity and a phosphatidic acid phosphatase were the dominant lipase activities induced by phosphate deficiency. Our results reflect a highly developed plasticity in the lipid composition of the plasma membrane and the tonoplast. In addition, phosphate deficiency-induced alterations in plasma membrane lipid composition may involve different sets of lipid-metabolizing enzymes in different plant tissues or species, at different stages of plant development and/or at different stages of stress adjustments.


Journal of Biological Chemistry | 2007

Optical Manipulation Reveals Strong Attracting Forces at Membrane Contact Sites between Endoplasmic Reticulum and Chloroplasts

Mats X. Andersson; Mattias Goksör; Anna Stina Sandelius

Eukaryote cells depend on membrane lipid trafficking from biogenic membranes, like the endoplasmic reticulum (ER), to other membranes in the cell. Two major routes for membrane lipid transport are recognized: vesicular trafficking and lipid transfer at zones of close contact between membranes. Specific ER regions involved in such membrane contact sites (MCSs) have been isolated, and lipid transfer at MCSs as well as protein-protein interactions between the partaking membranes have been demonstrated (reviewed by Holthuis, J. C. M., and Levine, T. P. (2005) Nat. Rev. 6, 209–220). Here we present the first demonstration of the physical association between membranes involved in MCSs: by using optical imaging and manipulation, strong attracting forces between ER and chloroplasts are revealed. We used Arabidopsis thaliana expressing green fluorescent protein in the ER lumen and observed leaf protoplasts by confocal microscopy. The ER network was evident, with ER branch end points apparently localized at chloroplast surfaces. After rupture of a protoplast using a laser scalpel, the cell content was released. ER fragments remained attached to the released chloroplasts and could be stretched out by optical tweezers. The applied force, 400 pN, could not drag a chloroplast free from its attached ER, which could reflect protein-protein interactions at the ER-chloroplast MCSs. As chloroplasts rely on import of ER-synthesized lipids, we propose that lipid transfer occurs at these MCSs. We suggest that lipid transfer at the MCSs also occurs in the opposite direction, for example to channel plastid-synthesized acyl groups to supply substrates for ER-localized synthesis of membrane and storage lipids.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis

Sang-Wook Park; Wei Li; Andrea Viehhauser; Bin He; Soonok Kim; Anders K. Nilsson; Mats X. Andersson; Joshua D. Kittle; Madana M. R. Ambavaram; Sheng Luan; Alan R. Esker; Dorothea Tholl; Daniela Cimini; Mats Ellerström; Gitta Coaker; Thomas K. Mitchell; Andy Pereira; Karl-Josef Dietz; Christopher B. Lawrence

The jasmonate family of phytohormones plays central roles in plant development and stress acclimation. However, the architecture of their signaling circuits remains largely unknown. Here we describe a jasmonate family binding protein, cyclophilin 20-3 (CYP20-3), which regulates stress-responsive cellular redox homeostasis. (+)-12-oxo-phytodienoic acid (OPDA) binding promotes CYP20-3 to form a complex with serine acetyltransferase 1, which triggers the formation of a hetero-oligomeric cysteine synthase complex with O-acetylserine(thiol)lyase B in chloroplasts. The cysteine synthase complex formation then activates sulfur assimilation that leads to increased levels of thiol metabolites and the buildup of cellular reduction potential. The enhanced redox capacity in turn coordinates the expression of a subset of OPDA-responsive genes. Thus, we conclude that CYP20-3 is a key effector protein that links OPDA signaling to amino acid biosynthesis and cellular redox homeostasis in stress responses.


Journal of Neurology | 1996

Acyclovir treatment of relapsing-remitting multiple sclerosis. A randomized, placebo-controlled, double-blind study.

Jan Lycke; Bo Svennerholm; Elisabeth Hjelmquist; Lars Frisén; Gaby Badr; Mats X. Andersson; Anders Vahlne; Oluf Andersen

Acyclovir treatment was used in a randomized, double-blind, placebo-controlled clinical trial with parallel groups to test the hypothesis that herpes virus infections are involved in the pathogenesis of multiple sclerosis (MS). Sixty patients with the relapsing-remitting form of MS were randomized to either oral treatment with 800 mg acyclovir or placebo tablets three times daily for 2 years. The clinical effect was investigated by an extensive test battery consisting of neurological examinations, neuro-ophthalmological and neuropsychological tests, and evoked potentials. Results were based on “intent-to-treat” data and the primary outcome measure was the exacerbation rate. In the acyclovir group (n = 30), 62 exacerbations were recorded during the treatment period, yielding an annual exacerbation rate of 1.03. The placebo group (n = 30) had 94 exacerbations and an annual exacerbation rate of 1.57. Thus, 34% fewer exacerbations were encountered during acyclovir treatment. This difference in exacerbation rate between the treatment groups was not significant (P = 0.083). However, this trend to a lower disease activity in acyclovir-treated patients was supported in subsequent data analysis. If the patients were grouped according to exacerbation frequencies, i.e. into low (0–2), medium (3–5) and high (6–8) rate groups, the difference between acyclovir and placebo treatment was significant (P = 0.017). Moreover, in a subgroup of the population with a duration of the disease of at least 2 years providing an exacerbation rate base-line before entry, individual differences in exacerbation rates were compared between the 2-year pre-study period and the study period in acyclovir-treated (n = 19) and placebo (n = 20) patients and acyclovir-treated patients showed a significant reduction of exacerbations (P = 0.024). Otherwise, neurological parameters were essentially unaffected by acyclovir treatment and there were no convincing signs of reduced neurological deterioration in the acyclovir group. This study indicates that acyclovir treatment might inhibit the triggering of MS exacerbations and thus suggests that acyclovir-susceptible viruses might be involved in the pathogenesis of MS. This possibility warrants further investigation.


Journal of Biological Chemistry | 2006

Oxylipin Profiling of the Hypersensitive Response in Arabidopsis thaliana FORMATION OF A NOVEL OXO-PHYTODIENOIC ACID-CONTAINING GALACTOLIPID, ARABIDOPSIDE E

Mats X. Andersson; Mats Hamberg; Olga Kourtchenko; Åsa Brunnström; Kerry L. McPhail; William H. Gerwick; Cornelia Göbel; Ivo Feussner; Mats Ellerström

Oxidation products of unsaturated fatty acids, collectively known as oxylipins, function as signaling molecules in plants during development, wounding, and insect and pathogen attack. Certain oxylipins are also known to have direct cytotoxic effects on pathogens. We used inducible expression of bacterial avirulence proteins in planta to study the involvement of oxylipins in race-specific defense against bacterial pathogens. We demonstrate that recognition of the Pseudomonas syringae avirulence protein AvrRpm1 induces 9- and 13-lipoxygenase-dependent oxylipin synthesis in Arabidopsis thaliana. The major oxylipins accumulated were jasmonic acid, 12-oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. The majority of the newly formed oxylipins (>90%) was found to be esterified to glycerolipids, whereby 12-oxo-phytodienoic acid and dinor-oxo-phytodienoic acid were found to be esterified to a novel galactolipid. The structure of the substance was determined as a monogalactosyldiacylglycerol containing two 12-oxo-phytodienoic acids and one dinor-oxo-phytodienoic acid acyl chain and was given the trivial name arabidopside E. This substance accumulated to surprisingly high levels, 7-8% of total lipid content, and was shown to inhibit growth of a bacterial pathogen in vitro. Arabidopside E was formed also after recognition of the avirulence protein AvrRpt2, suggesting that this could be a conserved feature of defense reactions against bacterial pathogens. In conclusion, the data presented suggest a role of enzymatically formed oxylipins, especially the octadecanoids and arabidopside E in race-specific resistance against bacterial pathogens.


Plant Physiology | 2007

Oxo-Phytodienoic Acid-Containing Galactolipids in Arabidopsis : Jasmonate Signaling Dependence

Olga Kourtchenko; Mats X. Andersson; Mats Hamberg; Åsa Brunnström; Cornelia Göbel; Kerry L. McPhail; William H. Gerwick; Ivo Feussner; Mats Ellerström

The jasmonate family of phytohormones, as represented by 12-oxo-phytodienoic acid (OPDA), dinor-phytodienoic acid (dn-OPDA), and jasmonic acid in Arabidopsis (Arabidopsis thaliana), has been implicated in a vast array of different developmental processes and stress responses. Recent reports indicate that OPDA and dn-OPDA occur not only as free acids in Arabidopsis, but also as esters with complex lipids, so-called arabidopsides. Recently, we showed that recognition of the two bacterial effector proteins AvrRpm1 and AvrRpt2 induced high levels of a molecule consisting of two OPDAs and one dn-OPDA esterified to a monogalactosyl diacylglycerol moiety, named arabidopside E. In this study, we demonstrate that the synthesis of arabidopsides is mainly independent of the prokaryotic lipid biosynthesis pathway in the chloroplast, and, in addition to what previously has been reported, arabidopside E as well as an all-OPDA analog, arabidopside G, described here accumulated during the hypersensitive response and in response to wounding. We also show that different signaling pathways lead to the formation of arabidopsides during the hypersensitive response and the wounding response, respectively. However, the formation of arabidopsides during both responses is dependent on an intact jasmonate signaling pathway. Additionally, we report inhibition of growth of the fungal necrotrophic pathogen Botrytis cinerea and in planta release of free jasmonates in a time frame that overlaps with the observed reduction of arabidopside levels. Thus, arabidopsides may have a dual function: as antipathogenic substances and as storage compounds that allow the slow release of free jasmonates.


Plant Cell and Environment | 2008

Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid‐to‐digalactosyl diacylglycerol exchange in higher plants

Henrik Tjellström; Mats X. Andersson; Karin Larsson; Anna Stina Sandelius

It is well established that phosphate deficiency induces the replacement of membrane phospholipid with non-phosphorous lipids in extra-plastidial membranes (e.g. plasma membrane, tonoplast, mitochondria). The predominant replacement lipid is digalactosyl diacylglycerol (DGDG). This paper reports that the phospholipid-to-DGDG replacement is reversible, and that when oat seedlings are re-supplied with radio-labelled phosphate, it is initially recovered primarily in phosphatidylcholine (PC). Within 2 d, the shoot contains more than half of the lipid-associated radiolabel, reflecting phosphate translocation. Oat was also cultivated in different concentrations of phosphate and the DGDG/PC ratio in roots and phospholipase activities in isolated plasma membranes was assayed after different times of cultivation. The DGDG/PC ratio in root tissue correlated more closely with plasma membrane-localized phospholipase D, yielding phosphatidic acid (PA), than with plasma membrane-localized PA phosphatase, the activity that results in a decreased proportion of phospolipids. The lipid degradation data did not reflect a significant involvement of phospholipase C, although a putative phospholipase C analogue, non-specific phospholipase C4 (NPC4), was present in oat roots. The correlation between increased phospholipase D activity and DGDG/PC ratio is consistent with a model where phospholipid-to-DGDG replacement involves formation of PA that readily is removed from the plasma membrane for further degradation elsewhere.

Collaboration


Dive into the Mats X. Andersson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per Fahlberg

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge