Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matt A. Bernstein is active.

Publication


Featured researches published by Matt A. Bernstein.


Journal of Magnetic Resonance Imaging | 2008

The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods

Clifford R. Jack; Matt A. Bernstein; Nick C. Fox; Paul M. Thompson; Gene E. Alexander; Danielle Harvey; Bret Borowski; Paula J. Britson; Jennifer L. Whitwell; Chadwick P. Ward; Anders M. Dale; Joel P. Felmlee; Jeffrey L. Gunter; Derek L. G. Hill; Ronald J. Killiany; Norbert Schuff; Sabrina Fox-Bosetti; Chen Lin; Colin Studholme; Charles DeCarli; Gunnar Krueger; Heidi A. Ward; Gregory J. Metzger; Katherine T. Scott; Richard Philip Mallozzi; Daniel James Blezek; Joshua R. Levy; Josef Phillip Debbins; Adam S. Fleisher; Marilyn S. Albert

The Alzheimers Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimers disease. Magnetic resonance imaging (MRI), (18F)‐fluorodeoxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquiredat multiple time points. All data will be cross‐linked and made available to the general scientific community. The purpose of this report is to describe the MRI methods employed in ADNI. The ADNI MRI core established specifications thatguided protocol development. A major effort was devoted toevaluating 3D T1‐weighted sequences for morphometric analyses. Several options for this sequence were optimized for the relevant manufacturer platforms and then compared in a reduced‐scale clinical trial. The protocol selected for the ADNI study includes: back‐to‐back 3D magnetization prepared rapid gradient echo (MP‐RAGE) scans; B1‐calibration scans when applicable; and an axial proton density‐T2 dual contrast (i.e., echo) fast spin echo/turbo spin echo (FSE/TSE) for pathology detection. ADNI MRI methods seek to maximize scientific utility while minimizing the burden placed on participants. The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom‐based monitoring of all scanners could be used as a model for other multisite trials. J. Magn. Reson. Imaging 2008.


Brain | 2010

Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease

Clifford R. Jack; Heather J. Wiste; Prashanthi Vemuri; Stephen D. Weigand; Matthew L. Senjem; Guang Zeng; Matt A. Bernstein; Jeffrey L. Gunter; Vernon S. Pankratz; Paul S. Aisen; Michael W. Weiner; Ronald C. Petersen; Leslie M. Shaw; John Q. Trojanowski; David S. Knopman

Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer’s dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer’s Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer’s dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were ‘amyloid positive’ (n = 165, with the assumption that Alzheimers pathology is dominant in this group) and those who were ‘amyloid negative’ (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan–Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P < 0.001) while Aβ load did not (P = 0.44). In contrast, when all 218 subjects with mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter-quartile difference of 2.6 for both); however, the risk profile was linear throughout the range of hippocampal atrophy values but reached a ceiling at higher values of brain Aβ load. Our results are consistent with a model of Alzheimer’s disease in which Aβ deposition initiates the pathological cascade but is not the direct cause of cognitive impairment as evidenced by the fact that Aβ load severity is decoupled from risk of progression at high levels. In contrast, hippocampal atrophy indicates how far along the neurodegenerative path one is, and hence how close to progressing to dementia. Possible explanations for our finding that many subjects with mild cognitive impairment have intermediate levels of Aβ load include: (i) individual subjects may reach an Aβ load plateau at varying absolute levels; (ii) some subjects may be more biologically susceptible to Aβ than others; and (iii) subjects with mild cognitive impairment with intermediate levels of Aβ may represent individuals with Alzheimer’s disease co-existent with other pathologies.


Magnetic Resonance in Medicine | 2001

High-resolution intracranial and cervical MRA at 3.0T: technical considerations and initial experience.

Matt A. Bernstein; John Huston; Chen Lin; Gordon F. Gibbs; Joel P. Felmlee

Initial experience with intracranial and cervical MRA at 3.0T is reported. Phantom measurements (corrected for relaxation effects) show S/N (3.0T) = 2.14 ± 0.08 × S/N (1.5T) in identical‐geometry head coils. A 3.0T 3DTOF intracranial imaging protocol with higher‐order autoshimming was developed and compared to 1.5T 3DTOF in 12 patients with aneurysms. A comparison by two radiologists showed the 3.0T to be significantly better (P < 0.001) for visualization of the aneurysms. The feasibility of cervical and intracranial contrast enhanced MR angiography (CEMRA) at 3.0T is also examined. The relaxivity of the gadolinium contrast agent decreases by only about 4–7% when the field strength is increased from 1.5 to 3.0T. Cervical 3.0T CEMRA was obtained in eight patients, two of whom had 1.5T studies available for direct comparison. Image comparison suggests 3.0T to be a favorable field strength for cervical CEMRA. Voxel volumes of 0.62–0.73 mm3 (not including zero‐filling) were readily achieved at 3.0T with the use of a single‐channel transmit‐receive head or cervical coil, a 25 mL bolus of gadoteridol, and a 3D pulse sequence with a 66% sampling efficiency. This spatial resolution allowed visualization of intracranial aneurysms, carotid dissections, and atherosclerotic disease including ulcerations. Potential drawbacks of 3.0T MRA are increased SAR and T  *2 dephasing compared to 1.5T. Image comparison suggests signal loss due to T  *2 dephasing will not be substantially more problematic than at 1.5T. The dependence of RF power deposition on TR for CEMRA is calculated and discussed. Magn Reson Med 46:955–962, 2001.


NeuroImage | 2006

Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

Alex D. Leow; Andrea D. Klunder; Clifford R. Jack; Arthur W. Toga; Anders M. Dale; Matt A. Bernstein; Paula J. Britson; Jeffrey L. Gunter; Chadwick P. Ward; Jennifer L. Whitwell; Bret Borowski; Adam S. Fleisher; Nick C. Fox; Danielle Harvey; John Kornak; Norbert Schuff; Colin Studholme; Gene E. Alexander; Michael W. Weiner; Paul M. Thompson

Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimers Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.


Alzheimers & Dementia | 2010

Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative.

Clifford R. Jack; Matt A. Bernstein; Bret Borowski; Jeffrey L. Gunter; Nick C. Fox; Paul M. Thompson; Norbert Schuff; Gunnar Krueger; Ronald J. Killiany; Charles DeCarli; Anders M. Dale; Owen W. Carmichael; Duygu Tosun; Michael W. Weiner

Functions of the Alzheimers Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) core fall into three categories: (1) those of the central MRI core laboratory at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data; and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre‐processing, and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimers disease. Our approach to the present (“ADNI‐GO”) and future (“ADNI‐2,” if funded) MRI protocol will be to maintain MRI methodological consistency in the previously enrolled “ADNI‐1” subjects who are followed up longitudinally in ADNI‐GO and ADNI‐2. We will modernize and expand the MRI protocol for all newly enrolled ADNI‐GO and ADNI‐2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1‐weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI‐GO and ADNI‐2 protocol, we will perform vendor‐specific pilot sub‐studies of arterial spin‐labeling perfusion, resting state functional connectivity, and diffusion tensor imaging. One of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub‐studies are designed to demonstrate the feasibility of acquiring useful data in a multicenter (but single vendor) setting for these three emerging MRI applications.


Journal of Magnetic Resonance Imaging | 2006

Imaging artifacts at 3.0T

Matt A. Bernstein; John Huston; Heidi A. Ward

Clinical MRI at a field strength of 3.0T is finding increasing use. However, along with the advantages of 3.0T, such as increased SNR, there can be drawbacks, including increased levels of imaging artifacts. Although every imaging artifact observed at 3.0T can also be present at 1.5T, the intensity level is often higher at 3.0T and thus the artifact is more objectionable. This review describes some of the imaging artifacts that are commonly observed with 3.0T imaging, and their root causes. When possible, countermeasures that reduce the artifact level are described. J. Magn. Reson. Imaging 2006.


NeuroImage | 2008

3D characterization of brain atrophy in Alzheimer's disease and mild cognitive impairment using tensor-based morphometry

Xue Hua; Alex D. Leow; Suh Lee; Andrea D. Klunder; Arthur W. Toga; Natasha Lepore; Yi Yu Chou; Caroline Brun; Ming Chang Chiang; Marina Barysheva; Clifford R. Jack; Matt A. Bernstein; Paula J. Britson; Chadwick P. Ward; Jennifer L. Whitwell; Bret Borowski; Adam S. Fleisher; Nick C. Fox; Richard G. Boyes; Josephine Barnes; Danielle Harvey; John Kornak; Norbert Schuff; Lauren Boreta; Gene E. Alexander; Michael W. Weiner; Paul M. Thompson

Tensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimers disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.1 years+/-7.7 SD). We warped each individual brain image (N=120) to the control group average template to create Jacobian maps, which show the local expansion or compression factor at each point in the image, reflecting individual volumetric differences. Statistical maps of group differences revealed widespread medial temporal and limbic atrophy in AD, with a lesser, more restricted distribution in MCI. Atrophy and CSF space expansion both correlated strongly with Mini-Mental State Exam (MMSE) scores and Clinical Dementia Rating (CDR). Using cumulative p-value plots, we investigated how detection sensitivity was influenced by the sample size, the choice of search region (whole brain, temporal lobe, hippocampus), the initial linear registration method (9- versus 12-parameter), and the type of TBM design. In the future, TBM may help to (1) identify factors that resist or accelerate the disease process, and (2) measure disease burden in treatment trials.


NeuroImage | 2009

Alzheimer’s Disease Neuroimaging Initiative: A one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition

Alex D. Leow; Igor Yanovsky; Neelroop N. Parikshak; Xue Hua; Suh Lee; Arthur W. Toga; Clifford R. Jack; Matt A. Bernstein; Paula J. Britson; Jeffrey L. Gunter; Chadwick P. Ward; Bret Borowski; Leslie M. Shaw; John Q. Trojanowski; Adam S. Fleisher; Danielle Harvey; John Kornak; Norbert Schuff; Gene E. Alexander; Michael W. Weiner; Paul M. Thompson

Tensor-based morphometry can recover three-dimensional longitudinal brain changes over time by nonlinearly registering baseline to follow-up MRI scans of the same subject. Here, we compared the anatomical distribution of longitudinal brain structural changes, over 12 months, using a subset of the ADNI dataset consisting of 20 patients with Alzheimers disease (AD), 40 healthy elderly controls, and 40 individuals with mild cognitive impairment (MCI). Each individual longitudinal change map (Jacobian map) was created using an unbiased registration technique, and spatially normalized to a geometrically-centered average image based on healthy controls. Voxelwise statistical analyses revealed regional differences in atrophy rates, and these differences were correlated with clinical measures and biomarkers. Consistent with prior studies, we detected widespread cerebral atrophy in AD, and a more restricted atrophic pattern in MCI. In MCI, temporal lobe atrophy rates were correlated with changes in mini-mental state exam (MMSE) scores, clinical dementia rating (CDR), and logical/verbal learning memory scores. In AD, temporal atrophy rates were correlated with several biomarker indices, including a higher CSF level of p-tau protein, and a greater CSF tau/beta amyloid 1-42 (ABeta42) ratio. Temporal lobe atrophy was significantly faster in MCI subjects who converted to AD than in non-converters. Serial MRI scans can therefore be analyzed with nonlinear image registration to relate ongoing neurodegeneration to a variety of pathological biomarkers, cognitive changes, and conversion from MCI to AD, tracking disease progression in 3-dimensional detail.


Alzheimers & Dementia | 2011

Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease

Clifford R. Jack; Frederik Barkhof; Matt A. Bernstein; Marc Cantillon; Patricia E. Cole; Charles DeCarli; Bruno Dubois; Simon Duchesne; Nick C. Fox; Giovanni B. Frisoni; Harald Hampel; Derek L. G. Hill; Keith Johnson; Jean-François Mangin; Philip Scheltens; Adam J. Schwarz; Reisa A. Sperling; Joyce Suhy; Paul M. Thompson; Michael W. Weiner; Norman L. Foster

The promise of Alzheimers disease biomarkers has led to their incorporation in new diagnostic criteria and in therapeutic trials; however, significant barriers exist to widespread use. Chief among these is the lack of internationally accepted standards for quantitative metrics. Hippocampal volumetry is the most widely studied quantitative magnetic resonance imaging measure in Alzheimers disease and thus represents the most rational target for an initial effort at standardization.


Neurology | 2010

Serial MRI and CSF biomarkers in normal aging, MCI, and AD

Prashanthi Vemuri; Heather J. Wiste; Stephen D. Weigand; D. S. Knopman; John Q. Trojanowski; L.M. Shaw; Matt A. Bernstein; Paul S. Aisen; Michael W. Weiner; Ronald C. Petersen; C. R. Jack

Objective: To compare the annual change in MRI and CSF biomarkers in cognitively normal (CN), amnestic mild cognitive impairment (aMCI), and Alzheimer disease (AD). Comparisons were based on intergroup discrimination, correlation with concurrent cognitive/functional changes, relationships to APOE genotype, and sample sizes for clinical trials. Methods: We used data from the Alzheimers Disease Neuroimaging Initiative study consisting of CN, aMCI, and AD cohorts with both baseline and 12-month follow-up CSF and MRI. The annual change in CSF (total-tau [t-tau], Aβ1-42) and MRI (change in ventricular volume) was obtained in 312 subjects (92 CN, 149 aMCI, 71 AD). Results: There was no significant average annual change in either CSF biomarker in any clinical group except t-tau in CN; moreover, the annual change did not differ by clinical group in pairwise comparisons. In contrast, annual increase in ventricular volume increased in the following order, AD > aMCI > CN, and differences were significant between all clinical groups in pairwise comparisons. Ventricular volume increase correlated with concurrent worsening on cognitive/functional indices in aMCI and AD whereas evidence of a similar correlation with change in CSF measures was unclear. The annual changes in MRI differed by APOE ε4 status overall and among aMCI while annual changes in CSF biomarkers did not. Estimated sample sizes for clinical trials are notably less for MRI than the CSF or clinical measures. Conclusions: Unlike the CSF biomarkers evaluated, changes in serial structural MRI are correlated with concurrent change on general cognitive and functional indices in impaired subjects, track with clinical disease stage, and are influenced by APOE genotype.

Collaboration


Dive into the Matt A. Bernstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul M. Thompson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norbert Schuff

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neda Jahanshad

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Arthur W. Toga

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge