Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Audano is active.

Publication


Featured researches published by Matteo Audano.


SpringerPlus | 2015

The lipogenic regulator Sterol Regulatory Element Binding Factor-1c is required to maintain peripheral nerve structure and function.

Nico Mitro; Gaia Cermenati; Matteo Audano; Silvia Giatti; Maurizio D’Antonio; Emma De Fabiani; Maurizio Crestani; Enrique Saez; Iñigo Azcoitia; Guido Cavaletti; Luis Miguel Garcia-Segura; Roberto Cosimo Melcangi; Donatella Caruso

Myelin is a membrane characterized by high lipid content to facilitate impulse propagation. Changes in myelin fatty acid (FA) composition have been associated with peripheral neuropathy [1], but the specific role of peripheral nerve FA synthesis in myelin formation and function is poorly understood. We explored the extent to which lack of the key regulator of FA synthesis as Sterol Regulatory Element Binding Factor-1c (Srebf-1c) could result in the development of peripheral neuropathy. We found that Srebf-1c null mice display a neuropathic phenotype consisting in hypermyelinated small caliber fibers, the result of changes in myelin periodicity. Unexpectedly, transcriptomics and metabolomics revealed activation of peroxisome proliferator activated receptor α (Pparα) signaling in Srebf-1c null peripheral nerve as a result of increased levels of two distinct phosphatidylcholine-based Pparα ligands, PC-C16:0/C18:1 and PC-C18:0/C18:1 [2, 3]. Pparα is a nuclear receptor that directs uptake, utilization and catabolism of FAs [4]. As a consequence of abnormal local Pparα activation, Srebf-1c null peripheral nerve exhibit increased fatty acid utilization, a detrimental condition leading to peripheral neuropathy. Treatment with a Pparα antagonist rescues the neuropathy of Srebf-1c null mice. These findings reveal the importance of FA synthesis to sustain peripheral nerve structure and function.


Cell Metabolism | 2015

Lack of sterol regulatory element binding factor-1c imposes glial fatty acid utilization leading to peripheral neuropathy

Gaia Cermenati; Matteo Audano; Silvia Giatti; Valentina Alda Carozzi; Carla Porretta-Serapiglia; Emanuela Pettinato; Cinzia Ferri; Maurizio D’Antonio; Emma De Fabiani; Maurizio Crestani; Samuele Scurati; Enrique Saez; Iñigo Azcoitia; Guido Cavaletti; Luis-Miguel Garcia-Segura; Roberto Cosimo Melcangi; Donatella Caruso; Nico Mitro

Myelin is a membrane characterized by high lipid content to facilitate impulse propagation. Changes in myelin fatty acid (FA) composition have been associated with peripheral neuropathy, but the specific role of peripheral nerve FA synthesis in myelin formation and function is poorly understood. We have found that mice lacking sterol regulatory element-binding factor-1c (Srebf1c) have blunted peripheral nerve FA synthesis that results in development of peripheral neuropathy. Srebf1c-null mice develop Remak bundle alterations and hypermyelination of small-caliber fibers that impair nerve function. Peripheral nerves lacking Srebf1c show decreased FA synthesis and glycolytic flux, but increased FA catabolism and mitochondrial function. These metabolic alterations are the result of local accumulation of two endogenous peroxisome proliferator-activated receptor-α (Pparα) ligands, 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine and 1-stearoyl-2-oleyl-sn-glycerol-3-phosphatidylcholine. Treatment with a Pparα antagonist rescues the neuropathy of Srebf1c-null mice. These findings reveal the importance of peripheral nerve FA synthesis to sustain myelin structure and function.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

Neuroactive steroid treatment modulates myelin lipid profile in diabetic peripheral neuropathy.

Nico Mitro; Gaia Cermenati; Elisabetta Brioschi; Federico Abbiati; Matteo Audano; Silvia Giatti; Maurizio Crestani; Emma De Fabiani; Iñigo Azcoitia; Luis Miguel Garcia-Segura; Donatella Caruso; Roberto Cosimo Melcangi

Diabetic peripheral neuropathy causes a decrease in the levels of dihydroprogesterone and 5α-androstane-3α,17β-diol (3α-diol) in the peripheral nerves. These two neuroactive steroids exert protective effects, by mechanisms that still remain elusive. We have previously shown that the activation of Liver X Receptors improves the peripheral neuropathic phenotype in diabetic rats. This protective effect is accompanied by the restoration to control values of the levels of dihydroprogesterone and 3α-diol in peripheral nerves. In addition, activation of these receptors decreases peripheral myelin abnormalities by improving the lipid desaturation capacity, which is strongly blunted by diabetes, and ultimately restores the myelin lipid profile to non-diabetic values. On this basis, we here investigate whether dihydroprogesterone or 3α-diol may exert their protective effects by modulating the myelin lipid profile. We report that both neuroactive steroids act on the lipogenic gene expression profile in the sciatic nerve of diabetic rats, reducing the accumulation of myelin saturated fatty acids and promoting desaturation. These changes were associated with a reduction in myelin structural alterations. These findings provide evidence that dihydroprogesterone and 3α-diol are protective agents against diabetic peripheral neuropathy by regulating the de novo lipogenesis pathway, which positively influences myelin lipid profile.


Biochimica et Biophysica Acta | 2015

Lipids in the nervous system: from biochemistry and molecular biology to patho-physiology.

Gaia Cermenati; Nico Mitro; Matteo Audano; Roberto Cosimo Melcangi; Maurizio Crestani; Emma De Fabiani; Donatella Caruso

Lipids in the nervous system accomplish a great number of key functions, from synaptogenesis to impulse conduction, and more. Most of the lipids of the nervous system are localized in myelin sheaths. It has long been known that myelin structure and brain homeostasis rely on specific lipid-protein interactions and on specific cell-to-cell signaling. In more recent years, the growing advances in large-scale technologies and genetically modified animal models have provided valuable insights into the role of lipids in the nervous system. Key findings recently emerged in these areas are here summarized. In addition, we briefly discuss how this new knowledge can open novel approaches for the treatment of diseases associated with alteration of lipid metabolism/homeostasis in the nervous system. This article is part of a Special Issue entitled Linking transcription to physiology in lipidomics.


International Journal of Molecular Sciences | 2018

PPAR Agonists and Metabolic Syndrome: An Established Role?

Margherita Botta; Matteo Audano; Amirhossein Sahebkar; Cesare R. Sirtori; Nico Mitro; Massimiliano Ruscica

Therapeutic approaches to metabolic syndrome (MetS) are numerous and may target lipoproteins, blood pressure or anthropometric indices. Peroxisome proliferator-activated receptors (PPARs) are involved in the metabolic regulation of lipid and lipoprotein levels, i.e., triglycerides (TGs), blood glucose, and abdominal adiposity. PPARs may be classified into the α, β/δ and γ subtypes. The PPAR-α agonists, mainly fibrates (including newer molecules such as pemafibrate) and omega-3 fatty acids, are powerful TG-lowering agents. They mainly affect TG catabolism and, particularly with fibrates, raise the levels of high-density lipoprotein cholesterol (HDL-C). PPAR-γ agonists, mainly glitazones, show a smaller activity on TGs but are powerful glucose-lowering agents. Newer PPAR-α/δ agonists, e.g., elafibranor, have been designed to achieve single drugs with TG-lowering and HDL-C-raising effects, in addition to the insulin-sensitizing and antihyperglycemic effects of glitazones. They also hold promise for the treatment of non-alcoholic fatty liver disease (NAFLD) which is closely associated with the MetS. The PPAR system thus offers an important hope in the management of atherogenic dyslipidemias, although concerns regarding potential adverse events such as the rise of plasma creatinine, gallstone formation, drug–drug interactions (i.e., gemfibrozil) and myopathy should also be acknowledged.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

Short-term effects of diabetes on neurosteroidogenesis in the rat hippocampus

Simone Romano; Nico Mitro; Silvia Diviccaro; Roberto Spezzano; Matteo Audano; Luis Miguel Garcia-Segura; Donatella Caruso; Roberto Cosimo Melcangi

Diabetes may induce neurophysiological and structural changes in the central nervous system (i.e., diabetic encephalopathy). We here explored whether the levels of neuroactive steroids (i.e., neuroprotective agents) in the hippocampus may be altered by short-term diabetes (i.e., one month). To this aim, by liquid chromatography-tandem mass spectrometry we observed that in the experimental model of the rat raised diabetic by streptozotocin injection, one month of pathology induced changes in the levels of several neuroactive steroids, such as pregnenolone, progesterone and its metabolites (i.e., tetrahydroprogesterone and isopregnanolone) and testosterone and its metabolites (i.e., dihydrotestosterone and 3α-diol). Interestingly these brain changes were not fully reflected by the plasma level changes, suggesting that early phase of diabetes directly affects steroidogenesis and/or steroid metabolism in the hippocampus. These concepts are also supported by the findings that crucial steps of steroidogenic machinery, such as the gene expression of steroidogenic acute regulatory protein (i.e., molecule involved in the translocation of cholesterol into mitochondria) and cytochrome P450 side chain cleavage (i.e., enzyme converting cholesterol into pregnenolone) and 5α-reductase (enzyme converting progesterone and testosterone into their metabolites) are also affected in the hippocampus. In addition, cholesterol homeostasis as well as the functionality of mitochondria, a key organelle in which the limiting step of neuroactive steroid synthesis takes place, are also affected. Data obtained indicate that short-term diabetes alters hippocampal steroidogenic machinery and that these changes are associated with impaired cholesterol homeostasis and mitochondrial dysfunction in the hippocampus, suggesting them as relevant factors for the development of diabetic encephalopathy.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

Diabetes alters myelin lipid profile in rat cerebral cortex: Protective effects of dihydroprogesterone

Gaia Cermenati; Silvia Giatti; Matteo Audano; Marzia Pesaresi; Roberto Spezzano; Donatella Caruso; Nico Mitro; Roberto Cosimo Melcangi

Due to the emerging association of diabetes with several psychiatric and neurodegenerative events, the evaluation of the effects of this pathology on the brain function has now a high priority in biomedical research. In particular, the effects of diabetes on myelin compartment have been poorly taken into consideration. To this purpose, we performed a deep lipidomic analysis of cortical myelin in the streptozotocin-induced diabetic rat model. In male rats three months of diabetes induced an extensive alterations in levels of phosphatidylcholines and phosphatidylethanolamines (the main species present in myelin membranes), plasmalogens as well as phosphatidylinositols and phosphatidylserines. In addition, the levels of cholesterol and myelin basic protein were also decreased. Because these lipids exert important functional and structural roles in the myelin compartment, our data indicate that cerebral cortex myelin is severely compromised in diabetic status. Treatment for one-month with a metabolite of progesterone, dihydroprogesterone, restored the lipid and protein myelin profiles to the levels observed in non-diabetic animals. These data suggest the potential of therapeutic efficacy of DHP to restore myelin in the diabetic brain.


Journal of Alzheimer's Disease | 2017

microRNA 221 Targets ADAM10 mRNA and is Downregulated in Alzheimer’s Disease

Patricia Manzine; Silvia Pelucchi; Maria Aderuza Horst; Francisco Assis Carvalho Vale; Sofia Cristina Iost Pavarini; Matteo Audano; Nico Mitro; Monica Di Luca; Elena Marcello; Márcia Regina Cominetti

ADAM10 is the α-secretase that cleaves amyloid-β protein precursor in the non-amyloidogenic pathway in Alzheimers disease (AD) and is known to be regulated by different microRNAs (miRNAs), which are post-transcriptional regulators related to several biological and pathological processes, including AD. Here we proposed to explore and validate miRNAs that have direct or indirect relations to the AD pathophysiology and ADAM10 gene. Approximately 700 miRNAs were analyzed and 21 differentially expressed miRNAs were validated in a sample of 21 AD subjects and 17 cognitively healthy matched controls. SH-SY5Y cells were transfected with miR-144-5p, miR-221, and miR-374 mimics and inhibitors, and ADAM10 protein levels were evaluated. miR-144-5p, miR-221, and miR-374 were downregulated in AD. The overexpression of miR-221 in SH-SY5Y cells resulted in ADAM10 reduction and its inhibition in ADAM10 increased. These findings show that miR-221 can be a new potential therapeutic target for increasing ADAM10 levels in AD. In addition, these results can contribute to the better understanding of ADAM10 post-transcriptional regulation.


Current Genomics | 2015

Energizing Genetics and Epi-genetics: Role in the Regulation of Mitochondrial Function

Matteo Audano; Alessandra Ferrari; Erika Fiorino; Martin Kuenzl; Donatella Caruso; Nico Mitro; Maurizio Crestani; Emma De Fabiani

Energy metabolism and mitochondrial function hold a core position in cellular homeostasis. Oxidative metabolism is regulated at multiple levels, ranging from gene transcription to allosteric modulation. To accomplish the fine tuning of these multiple regulatory circuits, the nuclear and mitochondrial compartments are tightly and reciprocally controlled. The fact that nuclear encoded factors, PPARγ coactivator 1α and mitochondrial transcription factor A, play pivotal roles in the regulation of oxidative metabolism and mitochondrial biogenesis is paradigmatic of this crosstalk. Here we provide an updated survey of the genetic and epigenetic mechanisms involved in the control of energy metabolism and mitochondrial function. Chromatin dynamics highly depends on post-translational modifications occurring at specific amino acids in histone proteins and other factors associated to nuclear DNA. In addition to the well characterized enzymes responsible for histone methylation/demethylation and acetylation/deacetylation, other factors have gone on the “metabolic stage”. This is the case of the new class of α-ketoglutarate-regulated demethylases (Jumonji C domain containing demethylases) and of the NAD+-dependent deacetylases, also known as sirtuins. Moreover, unexpected features of the machineries involved in mitochondrial DNA (mtDNA) replication and transcription, mitochondrial RNA processing and maturation have recently emerged. Mutations or defects of any component of these machineries profoundly affect mitochondrial activity and oxidative metabolism. Finally, recent evidences support the importance of mtDNA packaging in replication and transcription. These observations, along with the discovery that non-classical CpG islands present in mtDNA undergo methylation, indicate that epigenetics also plays a role in the regulation of the mitochondrial genome function.


Frontiers in Cellular Neuroscience | 2018

Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice

Giuseppe Tatulli; Nico Mitro; Stefano Cannata; Matteo Audano; Donatella Caruso; Giovanna D’Arcangelo; Daniele Lettieri-Barbato; Katia Aquilano

Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson’s disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.

Collaboration


Dive into the Matteo Audano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge