Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Beretta is active.

Publication


Featured researches published by Matteo Beretta.


Journal of Biological Chemistry | 2008

Bioactivation of Nitroglycerin by Purified Mitochondrial and Cytosolic Aldehyde Dehydrogenases

Matteo Beretta; Karl Gruber; Alexander Kollau; Michael Russwurm; Doris Koesling; Walter Goessler; Wing Ming Keung; Kurt Schmidt; Bernd Mayer

Metabolism of nitroglycerin (GTN) to 1,2-glycerol dinitrate (GDN) and nitrite by mitochondrial aldehyde dehydrogenase (ALDH2) is essentially involved in GTN bioactivation resulting in cyclic GMP-mediated vascular relaxation. The link between nitrite formation and activation of soluble guanylate cyclase (sGC) is still unclear. To test the hypothesis that the ALDH2 reaction is sufficient for GTN bioactivation, we measured GTN-induced formation of cGMP by purified sGC in the presence of purified ALDH2 and used a Clark-type electrode to probe for nitric oxide (NO) formation. In addition, we studied whether GTN bioactivation is a specific feature of ALDH2 or is also catalyzed by the cytosolic isoform (ALDH1). Purified ALDH1 and ALDH2 metabolized GTN to 1,2- and 1,3-GDN with predominant formation of the 1,2-isomer that was inhibited by chloral hydrate (ALDH1 and ALDH2) and daidzin (ALDH2). GTN had no effect on sGC activity in the presence of bovine serum albumin but caused pronounced cGMP accumulation in the presence of ALDH1 or ALDH2. The effects of the ALDH isoforms were dependent on the amount of added protein and, like 1,2-GDN formation, were sensitive to ALDH inhibitors. GTN caused biphasic sGC activation with apparent EC50 values of 42 ± 2.9 and 3.1 ± 0.4 μm in the presence of ALDH1 and ALDH2, respectively. Incubation of ALDH1 or ALDH2 with GTN resulted in sustained, chloral hydrate-sensitive formation of NO. These data may explain the coupling of ALDH2-catalyzed GTN metabolism to sGC activation in vascular smooth muscle.


Molecular Pharmacology | 2009

Mechanisms underlying activation of soluble guanylate cyclase by the nitroxyl donor Angeli's salt.

Andreas Zeller; M. Verena Wenzl; Matteo Beretta; Heike Stessel; Michael Russwurm; Doris Koesling; Kurt Schmidt; Bernd Mayer

Nitroxyl (HNO) may be formed endogenously by uncoupled nitric-oxide (NO) synthases, enzymatic reduction of NO or as product of vascular nitroglycerin bioactivation. The established HNO donor Angelis salt (trioxodinitrate, AS) causes cGMP-dependent vasodilation through activation of soluble guanylate cyclase (sGC). We investigated the mechanisms underlying this effect using purified sGC and cultured endothelial cells. AS (up to 0.1 mM) had no significant effect on sGC activity in the absence of superoxide dismutase (SOD) or dithiothreitol (DTT). In the presence of SOD, AS caused biphasic sGC activation (apparent EC50 ∼10 nM, maximum at 1 μM) that was accompanied by the formation of NO. DTT (2 mM) inhibited the effects of <10 μM AS but led to sGC activation and NO release at 0.1 mM AS even without SOD. AS had no effect on ferric sGC, excluding activation of the oxidized enzyme by HNO. The NO scavenger carboxy-PTIO inhibited endothelial cGMP accumulation induced by AS in the presence but not in the absence of SOD (EC50 ∼50 nM and ∼16 μM, respectively). Carboxy-PTIO (0.1 mM) inhibited the effect of ≤10 μM AS in the presence of SOD but caused NO release from 0.1 mM AS in the absence of SOD. These data indicate that AS activates sGC exclusively via NO, formed either via SOD-catalyzed oxidation of HNO or through a minor AS decomposition pathway that is unmasked in the presence of HNO scavenging thiols.


European Journal of Histochemistry | 2004

Cytoplasmic changes and developmental competence of bovine oocytes cryopreserved without cumulus cells

S. Modina; Matteo Beretta; Valentina Lodde; A. Lauria; Alberto M. Luciano

The cryopreservation of female gametes is still an open problem because of their structural sensitivity to the cooling-and-freezing process and to the exposure to cryoprotectants. The present work was aimed to study the effect of vitrification on immature bovine oocytes freed of cumulus cell investment before freezing. To verify the feasibility and efficiency of denuded oocyte (DO) cryopreservation, the cytoplasmic alterations eventually induced either by cell removal or by the vitrification process were analyzed. In particular, the migration of cortical granules and Ca++ localization were studied. In addition, the localization and distribution of microtubules and microfilaments in immature fresh and vitrified DOs were evaluated. Finally, to establish whether the removal of cumulus cells influenced developmental competence, DOs were thawed after vitrification, matured in vitro and fertilized; then presumptive zygotes were cultured to reach the blastocyst stage. The results indicate that mechanical removal of cumulus cells from immature bovine oocytes does not affect their maturation competence but reduces the blastocyst rate when compared with intact cumulus oocyte complexes (COCs). The findings indicate further that the vitrification process induces changes of cytoplasmic components. However, the composition of the manipulation medium used to remove cumulus cells plays a crucial role in reducing the injuries caused by cryopreservation in both cytoplasmic and nuclear compartments. In fact, the presence of serum exerts a sort of protection, significantly improving both oocyte maturation and blastocyst rates. In conclusion, we demonstrate that denuded immature oocytes can be vitrified after cumulus cells removal and successfully develop up, after thawing, to the blastocyst stage, following in vitro maturation and fertilization.


Circulation Research | 2012

Vascular Bioactivation of Nitroglycerin Is Catalyzed by Cytosolic Aldehyde Dehydrogenase-2

Matteo Beretta; Gerald Wölkart; Michaela Schernthaner; Martina Griesberger; Regina Neubauer; Kurt Schmidt; Michael Sacherer; Frank R. Heinzel; Sepp D. Kohlwein; Bernd Mayer

Rationale: According to general view, aldehyde dehydrogenase-2 (ALDH2) catalyzes the high-affinity pathway of vascular nitroglycerin (GTN) bioactivation in smooth muscle mitochondria. Despite having wide implications to GTN pharmacology and raising many questions that are still unresolved, mitochondrial bioactivation of GTN in blood vessels is still lacking experimental support. Objective: In the present study, we investigated whether bioactivation of GTN is affected by the subcellular localization of ALDH2 using immortalized ALDH2-deficient aortic smooth muscle cells and mouse aortas with selective overexpression of the enzyme in either cytosol or mitochondria. Methods and Results: Quantitative Western blotting revealed that ALDH2 is mainly cytosolic in mouse aorta and human coronary arteries, with only approximately 15% (mouse) and approximately 5% (human) of the enzyme being localized in mitochondria. Infection of ALDH2-deficient aortic smooth muscle cells or isolated aortas with adenovirus containing ALDH2 cDNA with or without the mitochondrial signal peptide sequence led to selective expression of the protein in mitochondria and cytosol, respectively. Cytosolic overexpression of ALDH2 restored GTN-induced relaxation and GTN denitration to wild-type levels, whereas overexpression in mitochondria (6-fold vs wild-type) had no effect on relaxation. Overexpression of ALDH2 in the cytosol of ALDH2-deficient aortic smooth muscle cells led to a significant increase in GTN denitration and cyclic GMP accumulation, whereas mitochondrial overexpression had no effect. Conclusions: The data indicate that vascular bioactivation of GTN is catalyzed by cytosolic ALDH2. Mitochondrial GTN metabolism may contribute to oxidative stress-related adverse effects of nitrate therapy and the development of nitrate tolerance.


Journal of Biological Chemistry | 2010

Characterization of the East Asian Variant of Aldehyde Dehydrogenase-2 BIOACTIVATION OF NITROGLYCERIN AND EFFECTS OF Alda-1

Matteo Beretta; Antonius C. F. Gorren; M. Verena Wenzl; Robert M. Weis; Michael Russwurm; Doris Koesling; Kurt Schmidt; Bernd Mayer

The East Asian variant of mitochondrial aldehyde dehydrogenase (ALDH2) exhibits significantly reduced dehydrogenase, esterase, and nitroglycerin (GTN) denitrating activities. The small molecule Alda-1 was reported to partly restore low acetaldehyde dehydrogenase activity of this variant. In the present study we compared the wild type enzyme (ALDH2*1) with the Asian variant (ALDH2*2) regarding GTN bioactivation and the effects of Alda-1. Alda-1 increased acetaldehyde oxidation by ALDH2*1 and ALDH2*2 approximately 1.5- and 6-fold, respectively, and stimulated the esterase activities of both enzymes to similar extent as the coenzyme NAD. The effect of NAD was biphasic with pronounced inhibition occurring at ≥5 mm. In the presence of 1 mm NAD, Alda-1 stimulated ALDH2*2-catalyzed ester hydrolysis 73-fold, whereas the NAD-stimulated activity of ALDH2*1 was inhibited because of 20-fold increased inhibitory potency of NAD in the presence of the drug. Although ALDH2*2 exhibited 7-fold lower GTN denitrating activity and GTN affinity than ALDH2*1, the rate of nitric oxide formation was only reduced 2-fold, and soluble guanylate cyclase (sGC) activation was more pronounced than with wild type ALDH2 at saturating GTN. Alda-1 caused slight inhibition of GTN denitration and did not increase GTN-induced sGC activation in the presence of either variant. The present results indicate that Alda-1 stimulates established ALDH2 activities by improving NAD binding but does not improve the GTN binding affinity of the Asian variant. In addition, our data revealed an unexpected discrepancy between GTN reductase activity and sGC activation, suggesting that GTN denitration and bioactivation may reflect independent pathways of ALDH2-catalyzed GTN biotransformation.


Journal of Biological Chemistry | 2008

Partially Irreversible Inactivation of Mitochondrial Aldehyde Dehydrogenase by Nitroglycerin

Matteo Beretta; Astrid Sottler; Kurt Schmidt; Bernd Mayer; Antonius C. F. Gorren

Mitochondrial aldehyde dehydrogenase (ALDH2) may be involved in the biotransformation of glyceryl trinitrate (GTN), and the inactivation of ALDH2 by GTN may contribute to the phenomenon of nitrate tolerance. We studied the GTN-induced inactivation of ALDH2 by UV/visible absorption spectroscopy. Dehydrogenation of acetaldehyde and hydrolysis of p-nitrophenylacetate (p-NPA) were both inhibited by GTN. The rate of inhibition increased with the GTN concentration and decreased with the substrate concentration, indicative of competition between GTN and the substrates. Inactivation of p-NPA hydrolysis was greatly enhanced in the presence of NAD+, and, to a lesser extent, in the presence of NADH. In the presence of dithiothreitol (DTT) inactivation of ALDH2 was much slower. Dihydrolipoic acid (LPA-H2) was less effective than DTT, whereas glutathione, cysteine, and ascorbate did not protect against inactivation. When DTT was added after complete inactivation, dehydrogenase reactivation was quite modest (≤16%). The restored dehydrogenase activity correlated inversely with the GTN concentration but was hardly affected by the concentrations of acetaldehyde or DTT. Partial reactivation of dehydrogenation was also accomplished by LPA-H2 but not by GSH. We conclude that, in addition to the previously documented reversible inhibition by GTN that can be ascribed to the oxidation of the active site thiol, there is an irreversible component to ALDH inactivation. Importantly, ALDH2-catalyzed GTN reduction was partly inactivated by preincubation with GTN, suggesting that the inactivation of GTN reduction is also partly irreversible. These observations are consistent with a significant role for irreversible inactivation of ALDH2 in the development of nitrate tolerance.


Nitric Oxide | 2009

Mitochondrial nitrite reduction coupled to soluble guanylate cyclase activation: Lack of evidence for a role in the bioactivation of nitroglycerin

Alexander Kollau; Matteo Beretta; Michael Russwurm; Doris Koesling; Wing Ming Keung; Kurt Schmidt; Bernd Mayer

Reduction of nitrite to nitric oxide (NO) by components of the mitochondrial respiratory chain may link nitroglycerin biotransformation by mitochondrial aldehyde dehydrogenase (ALDH2) to activation of soluble guanylate cyclase (sGC). We used purified sGC as detector for NO-like bioactivity generated from nitrite and GTN by isolated heart and liver mitochondria. Exogenous NADH caused a pronounced increase in oxygen consumption that was completely inhibited by myxothiazol and cyanide. Oxygen depletion of cardiac mitochondria by NADH was accompanied by activation of sGC and cyanide-sensitive formation of NO. Mitochondrial biotransformation of nitroglycerin was sensitive to ALDH2 inhibitors and coupled to sGC activation but not affected by respiratory substrates or inhibitors. Our data suggest that cytochrome c oxidase catalyzes reduction of nitrite to NO at low O(2) tension but argue against the involvement of this pathway in mitochondrial bioactivation of nitroglycerin.


Journal of Biological Chemistry | 2009

Role of the General Base Glu-268 in Nitroglycerin Bioactivation and Superoxide Formation by Aldehyde Dehydrogenase-2

M. Verena Wenzl; Matteo Beretta; Antonius C. F. Gorren; Andreas Zeller; Pravas Kumar Baral; Karl Gruber; Michael Russwurm; Doris Koesling; Kurt Schmidt; Bernd Mayer

Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays an essential role in nitroglycerin (GTN) bioactivation, resulting in formation of NO or a related activator of soluble guanylate cyclase. ALDH2 denitrates GTN to 1,2-glyceryl dinitrate and nitrite but also catalyzes reduction of GTN to NO. To elucidate the relationship between ALDH2-catalyzed GTN bioconversion and established ALDH2 activities (dehydrogenase, esterase), we compared the function of the wild type (WT) enzyme with mutants lacking either the reactive Cys-302 (C302S) or the general base Glu-268 (E268Q). Although the C302S mutation led to >90% loss of all enzyme activities, the E268Q mutant exhibited virtually unaffected rates of GTN denitration despite low dehydrogenase and esterase activities. The nucleotide co-factor NAD caused a pronounced increase in the rates of 1,2-glyceryl dinitrate formation by WT-ALDH2 but inhibited the reaction catalyzed by the E268Q mutant. GTN bioactivation measured as activation of purified soluble guanylate cyclase or release of NO in the presence of WT- or E268Q-ALDH2 was markedly potentiated by superoxide dismutase, suggesting that bioavailability of GTN-derived NO is limited by co-generation of superoxide. Formation of superoxide was confirmed by determination of hydroethidine oxidation that was inhibited by superoxide dismutase and the ALDH2 inhibitor chloral hydrate. E268Q-ALDH2 exhibited ∼50% lower rates of superoxide formation than the WT enzyme. Our results suggest that Glu-268 is involved in the structural organization of the NAD-binding pocket but is not required for GTN denitration. ALDH2-catalyzed superoxide formation may essentially contribute to oxidative stress in GTN-exposed blood vessels.


Journal of Thrombosis and Haemostasis | 2005

Expression studies on a novel type 2B variant of the von Willebrand factor gene (R1308L) characterized by defective collagen binding

Luciano Baronciani; Augusto B. Federici; Matteo Beretta; G. Cozzi; Maria Teresa Canciani; P. M. Mannucci

Summary.  A novel mutation, R1308L (3923G > T) was present in the heterozygous state in five members of a family with type 2B von Willebrand disease (VWD) characterized by a full set of von Willebrand factor (VWF) multimers in plasma and by the absence of thrombocytopenia before and after desmopressin (DDAVP). The defect (R1308L) was located at the same amino acid position of one of the most common mutations associated with type 2B VWD (R1308C), which is characterized by the loss of high molecular weight VWF multimers (HMWM) in plasma and the occurrence of thrombocytopenia. To understand the mechanisms of this defect, the novel (R1308L) and ‘common’ (R1308C) mutations were expressed in COS‐7 cells, either alone or, to mimic the patients’ heterozygous state, together with wild‐type VWF. R1308L recombinant VWF (rVWF) had a higher affinity for the platelet glycoprotein Ibα (GPIbα) receptor than wild‐type rVWF, R1308C rVWF showing an even higher affinity. A novel finding was that both mutant rVWFs showed a similarly reduced binding to collagen type I and type III in comparison with wild‐type rVWF. The latter finding suggests a more important role than recognized so far for the VWF A1 domain in VWF binding to collagen, which may contribute to the in vivo hemostatic defect associated with type 2B VWD.


Cardiovascular Research | 2008

Vascular tolerance to nitroglycerin in ascorbate deficiency

Gerald Wölkart; M. Verena Wenzl; Matteo Beretta; Heike Stessel; Kurt Schmidt; Bernd Mayer

AIMS Nitroglycerin (GTN) acts through release of a nitric oxide (NO)-related activator of soluble guanylate cyclase in vascular smooth muscle. Besides enzymatic GTN bioactivation catalysed by aldehyde dehydrogenase, non-enzymatic reaction of GTN with ascorbate also results in the formation of a bioactive product. Using an established guinea pig model of ascorbate deficiency, we investigated whether endogenous ascorbate contributes to GTN-induced vasodilation. METHODS AND RESULTS Guinea pigs were fed either standard or ascorbate-free diet for 2 or 4 weeks prior to measuring the GTN response of aortic rings and isolated hearts. The effects of ascorbate on GTN metabolism were studied with purified mitochondrial aldehyde dehydrogenase (ALDH2) and isolated mitochondria. Ascorbate deprivation led to severe scorbutic symptoms and loss of body weight, but had no (2 weeks) or only slight (4 weeks) effects on aortic relaxations to a direct NO donor. The EC(50) of GTN was increased from 0.058 +/- 0.018 to 0.46 +/- 0.066 and 5.5 +/- 0.9 microM after 2 and 4 weeks of ascorbate-free diet, respectively. Similarly, coronary vasodilation to GTN was severely impaired in ascorbate deficiency. The potency of GTN was reduced to a similar extent by ALDH inhibitors in control and ascorbate-deficient blood vessels. Up to 10 mM ascorbate had no effect on GTN metabolism catalysed by purified ALDH2 or liver mitochondria isolated from ascorbate-deficient guinea pigs. CONCLUSION Our results indicate that prolonged ascorbate deficiency causes tolerance to GTN without affecting NO/cyclic GMP-mediated vasorelaxation.

Collaboration


Dive into the Matteo Beretta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge