Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Bonazzi is active.

Publication


Featured researches published by Matteo Bonazzi.


Nature Cell Biology | 2005

CtBP3/BARS drives membrane fission in dynamin-independent transport pathways

Matteo Bonazzi; Stefania Spanò; Gabriele Turacchio; Claudia Cericola; Carmen Valente; Antonino Colanzi; Hee Seok Kweon; Victor W. Hsu; Elena V. Polishchuck; Roman S. Polishchuck; Michele Sallese; Teodoro Pulvirenti; Daniela Corda; Alberto Luini

Membrane fission is a fundamental step in membrane transport. So far, the only fission protein machinery that has been implicated in in vivo transport involves dynamin, and functions in several, but not all, transport pathways. Thus, other fission machineries may exist. Here, we report that carboxy-terminal binding protein 3/brefeldin A-ribosylated substrate (CtBP3/BARS) controls fission in basolateral transport from the Golgi to the plasma membrane and in fluid-phase endocytosis, whereas dynamin is not involved in these steps. Conversely, CtBP3/BARS protein is inactive in apical transport to the plasma membrane and in receptor-mediated endocytosis, both steps being controlled by dynamin. This indicates that CtBP3/BARS controls membrane fission in endocytic and exocytic transport pathways, distinct from those that require dynamin.


Cell Host & Microbe | 2010

Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures

Serge Mostowy; Matteo Bonazzi; Mélanie A. Hamon; To Nam Tham; Adeline Mallet; Mickaël Lelek; Edith Gouin; Caroline Demangel; Roland Brosch; Christophe Zimmer; Anna Sartori; Makoto Kinoshita; Marc Lecuit; Pascale Cossart

Actin-based motility is used by various pathogens for dissemination within and between cells. Yet host factors restricting this process have not been identified. Septins are GTP-binding proteins that assemble as filaments and are essential for cell division. However, their role during interphase has remained elusive. Here, we report that septin assemblies are recruited to different bacteria that polymerize actin. We observed that intracytosolic Shigella either become compartmentalized in septin cage-like structures or form actin tails. Inactivation of septin caging increases the number of Shigella with actin tails and enhances cell-to-cell spread. TNF-α, a host cytokine produced upon Shigella infection, stimulates septin caging and restricts actin tail formation and cell-to-cell spread. Finally, we show that septin cages entrap bacteria targeted to autophagy. Together, these results reveal an unsuspected mechanism of host defense that restricts dissemination of invasive pathogens.


Cellular Microbiology | 2008

Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes

Matteo Bonazzi; Esteban Veiga; Javier Pizarro-Cerdá; Pascale Cossart

Listeria monocytogenes surface proteins internalin (Inl)A and InlB interact with the junctional protein E‐cadherin and the hepatocyte growth factor (HGF) receptor Met, respectively, on the surface of epithelial cells to mediate bacterial entry. Here we show that InlA triggers two successive E‐cadherin post‐translational modifications, i.e. the Src‐mediated tyrosine phosphorylation of E‐cadherin followed by its ubiquitination by the ubiquitin‐ligase Hakai. E‐cadherin ubiquitination induces the recruitment of clathrin that is required for optimal bacterial internalization. We also show that the initial clustering of E‐cadherin at the bacterial entry site requires caveolin, a protein normally involved in clathrin‐independent endocytosis. Strikingly clathrin and caveolin are also recruited at the site of entry of E‐cadherin‐coated sepharose beads and functional experiments demonstrate that these two proteins are required for bead entry. Together these results not only document how the endocytosis machinery is recruited and involved in the internalization of a zippering bacterium, but also strongly suggest a functional link between E‐cadherin endocytosis and the formation of adherens junctions in epithelial cells.


The EMBO Journal | 2005

A role for BARS at the fission step of COPI vesicle formation from Golgi membrane

Jia-Shu Yang; Stella Y. Lee; Stefania Spanò; Helge Gad; Leiliang Zhang; Zhongzhen Nie; Matteo Bonazzi; Daniela Corda; Alberto Luini; Victor W. Hsu

The core complex of Coat Protein I (COPI), known as coatomer, is sufficient to induce coated vesicular‐like structures from liposomal membrane. In the context of biological Golgi membrane, both palmitoyl‐coenzyme A (p‐coA) and ARFGAP1, a GTPase‐activating protein (GAP) for ADP‐Ribosylation Factor 1, also participate in vesicle formation, but how their roles may be linked remains unknown. Moreover, whether COPI vesicle formation from Golgi membrane requires additional factors also remains unclear. We now show that Brefeldin‐A ADP‐Ribosylated Substrate (BARS) plays a critical role in the fission step of COPI vesicle formation from Golgi membrane. This role of BARS requires its interaction with ARFGAP1, which is in turn regulated oppositely by p‐coA and nicotinamide adenine dinucleotide, which act as cofactors of BARS. Our findings not only identify a new factor needed for COPI vesicle formation from Golgi membrane but also reveal a surprising mechanism by which the roles of p‐coA and GAP are linked in this process.


The EMBO Journal | 2007

The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2

Antonino Colanzi; Cristina Hidalgo Carcedo; Angela Persico; Claudia Cericola; Gabriele Turacchio; Matteo Bonazzi; Alberto Luini; Daniela Corda

The Golgi ribbon is a complex structure of many stacks interconnected by tubules that undergo fragmentation during mitosis through a multistage process that allows correct Golgi inheritance. The fissioning protein CtBP1‐S/BARS (BARS) is essential for this, and is itself required for mitotic entry: a block in Golgi fragmentation results in cell‐cycle arrest in G2, defining the ‘Golgi mitotic checkpoint’. Here, we clarify the precise stage of Golgi fragmentation required for mitotic entry and the role of BARS in this process. Thus, during G2, the Golgi ribbon is converted into isolated stacks by fission of interstack connecting tubules. This requires BARS and is sufficient for G2/M transition. Cells without a Golgi ribbon are independent of BARS for Golgi fragmentation and mitotic entrance. Remarkably, fibroblasts from BARS‐knockout embryos have their Golgi complex divided into isolated stacks at all cell‐cycle stages, bypassing the need for BARS for Golgi fragmentation. This identifies the precise stage of Golgi fragmentation and the role of BARS in the Golgi mitotic checkpoint, setting the stage for molecular analysis of this process.


Cellular Microbiology | 2009

Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis

Matteo Bonazzi; Marc Lecuit; Pascale Cossart

Many bacterial pathogens that invade non‐phagocytic cells first interact with host cell surface receptors. Adhesion to the host cell is followed by the activation of specific host signalling pathways that mediate bacterial internalization. The food‐borne Gram‐positive bacterium Listeria monocytogenes makes use of two surface proteins, internalin (InlA) and InlB to engage in a species‐specific manner the adhesion molecule E‐cadherin and the hepatocyte growth factor receptor Met, respectively, to induce its internalization. After entry, Listeria has the capacity to spread from cell to cell and disseminate to its target organs after breaching the intestinal, blood–brain and placental barriers in human. InlA but not InlB is critical for the crossing of the intestinal barrier, whereas the conjugated action of both InlA and InlB mediates the crossing of the placental barrier. Here we review the InlA–E‐cadherin interaction, the signalling downstream of this interaction, the molecular mechanisms involved in bacterial internalization and the role of InlA–E‐cadherin interaction in the breaching of host barriers and the progression to listeriosis. Together, this review illustrates how in vitro data were validated by epidemiological approaches and in vivo studies using both natural hosts and genetically engineered animal models, thereby elucidating key issues of listeriosis pathophysiology.


PLOS Pathogens | 2015

The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii

Olivier Duron; Valérie Noël; Karen D. McCoy; Matteo Bonazzi; Karim Sidi-Boumedine; Olivier Morel; Fabrice Vavre; Lionel Zenner; Elsa Jourdain; Patrick Durand; Céline Arnathau; François Renaud; Jean-François Trape; Abel S. Biguezoton; Julie Cremaschi; Muriel Dietrich; Elsa Léger; Anaïs Appelgren; Marlène Dupraz; Elena Gómez-Díaz; Georges Diatta; Guiguigbaza-Kossigan Dayo; Hassane Adakal; Sébastien Zoungrana; Laurence Vial; Christine Chevillon

Q fever is a highly infectious disease with a worldwide distribution. Its causative agent, the intracellular bacterium Coxiella burnetii, infects a variety of vertebrate species, including humans. Its evolutionary origin remains almost entirely unknown and uncertainty persists regarding the identity and lifestyle of its ancestors. A few tick species were recently found to harbor maternally-inherited Coxiella-like organisms engaged in symbiotic interactions, but their relationships to the Q fever pathogen remain unclear. Here, we extensively sampled ticks, identifying new and atypical Coxiella strains from 40 of 58 examined species, and used this data to infer the evolutionary processes leading to the emergence of C. burnetii. Phylogenetic analyses of multi-locus typing and whole-genome sequencing data revealed that Coxiella-like organisms represent an ancient and monophyletic group allied to ticks. Remarkably, all known C. burnetii strains originate within this group and are the descendants of a Coxiella-like progenitor hosted by ticks. Using both colony-reared and field-collected gravid females, we further establish the presence of highly efficient maternal transmission of these Coxiella-like organisms in four examined tick species, a pattern coherent with an endosymbiotic lifestyle. Our laboratory culture assays also showed that these Coxiella-like organisms were not amenable to culture in the vertebrate cell environment, suggesting different metabolic requirements compared to C. burnetii. Altogether, this corpus of data demonstrates that C. burnetii recently evolved from an inherited symbiont of ticks which succeeded in infecting vertebrate cells, likely by the acquisition of novel virulence factors.


Journal of Cell Biology | 2011

Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization

Matteo Bonazzi; Lavanya Vasudevan; Adeline Mallet; Martin Sachse; Anna Sartori; Marie Christine Prevost; Allison Roberts; Sabrina B. Taner; Jeremy D. Wilbur; Frances M. Brodsky; Pascale Cossart

Clathrin assembles at bacterial adhesion sites and its phosphorylation is required for actin recruitment during bacterial infection.


PLOS Pathogens | 2014

Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening.

Eric Martinez; Franck Cantet; Laura Fava; Isobel H. Norville; Matteo Bonazzi

Coxiella burnetii is the agent of the emerging zoonosis Q fever. This pathogen invades phagocytic and non-phagocytic cells and uses a Dot/Icm secretion system to co-opt the endocytic pathway for the biogenesis of an acidic parasitophorous vacuole where Coxiella replicates in large numbers. The study of the cell biology of Coxiella infections has been severely hampered by the obligate intracellular nature of this microbe, and Coxiella factors involved in host/pathogen interactions remain to date largely uncharacterized. Here we focus on the large-scale identification of Coxiella virulence determinants using transposon mutagenesis coupled to high-content multi-phenotypic screening. We have isolated over 3000 Coxiella mutants, 1082 of which have been sequenced, annotated and screened. We have identified bacterial factors that regulate key steps of Coxiella infections: 1) internalization within host cells, 2) vacuole biogenesis/intracellular replication, and 3) protection of infected cells from apoptosis. Among these, we have investigated the role of Dot/Icm core proteins, determined the role of candidate Coxiella Dot/Icm substrates previously identified in silico and identified additional factors that play a relevant role in Coxiella pathogenesis. Importantly, we have identified CBU_1260 (OmpA) as the first Coxiella invasin. Mutations in ompA strongly decreased Coxiella internalization and replication within host cells; OmpA-coated beads adhered to and were internalized by non-phagocytic cells and the ectopic expression of OmpA in E. coli triggered its internalization within cells. Importantly, Coxiella internalization was efficiently inhibited by pretreating host cells with purified OmpA or by incubating Coxiella with a specific anti-OmpA antibody prior to host cell infection, suggesting the presence of a cognate receptor at the surface of host cells. In summary, we have developed multi-phenotypic assays for the study of host/pathogen interactions. By applying our methods to Coxiella burnetii, we have identified the first Coxiella protein involved in host cell invasion.


Cold Spring Harbor Perspectives in Biology | 2009

Listeria monocytogenes Internalin and E-cadherin: From Bench to Bedside

Matteo Bonazzi; Marc Lecuit; Pascale Cossart

Listeria monocytogenes is a Gram-positive bacterium responsible for a severe infection associated with different clinical features (gastroenteritis, meningoencephalitis, and abortion in pregnant women). These pathologies are caused by the unusual capacity of the bacterium to cross three host barriers during infection and to invade nonphagocytic cells. To invade host cells, Listeria uses two proteins, InlA and InlB, which have specific receptors on the host-cell surface, E-cadherin and Met, respectively. Here, we discuss the specificity of the InlA-E-cadherin interaction, the signaling cascade activated on E-cadherin engagement by InlA, and the role of InlA and E-cadherin in the breaching of host barriers and the dissemination of the infection.

Collaboration


Dive into the Matteo Bonazzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Corda

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Eric Martinez

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Alberto Luini

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Franck Cantet

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isobel H. Norville

Defence Science and Technology Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge