Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Cesaroni is active.

Publication


Featured researches published by Matteo Cesaroni.


Nature | 2013

Activating RNAs associate with Mediator to enhance chromatin architecture and transcription

Fan Lai; Ulf Andersson Ørom; Matteo Cesaroni; Malte Beringer; Dylan J. Taatjes; Gerd A. Blobel; Ramin Shiekhattar

Recent advances in genomic research have revealed the existence of a large number of transcripts devoid of protein-coding potential in multiple organisms. Although the functional role for long non-coding RNAs (lncRNAs) has been best defined in epigenetic phenomena such as X-chromosome inactivation and imprinting, different classes of lncRNAs may have varied biological functions. We and others have identified a class of lncRNAs, termed ncRNA-activating (ncRNA-a), that function to activate their neighbouring genes using a cis-mediated mechanism. To define the precise mode by which such enhancer-like RNAs function, we depleted factors with known roles in transcriptional activation and assessed their role in RNA-dependent activation. Here we report that depletion of the components of the co-activator complex, Mediator, specifically and potently diminished the ncRNA-induced activation of transcription in a heterologous reporter assay using human HEK293 cells. In vivo, Mediator is recruited to ncRNA-a target genes and regulates their expression. We show that ncRNA-a interact with Mediator to regulate its chromatin localization and kinase activity towards histone H3 serine 10. The Mediator complex harbouring disease- displays diminished ability to associate with activating ncRNAs. Chromosome conformation capture confirmed the presence of DNA looping between the ncRNA-a loci and its targets. Importantly, depletion of Mediator subunits or ncRNA-a reduced the chromatin looping between the two loci. Our results identify the human Mediator complex as the transducer of activating ncRNAs and highlight the importance of Mediator and activating ncRNA association in human disease.


Nature | 2007

Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive.

Ernesto Guccione; Christian Bassi; Fabio Casadio; Francesca Martinato; Matteo Cesaroni; Henning Schuchlautz; Bernhard Lüscher; Bruno Amati

Eukaryotic genomes are organized into active (euchromatic) and inactive (heterochromatic) chromatin domains. Post-translational modifications of histones (or ‘marks’) are key in defining these functional states, particularly in promoter regions. Mutual regulatory interactions between these marks—and the enzymes that catalyse them—contribute to the shaping of this epigenetic landscape, in a manner that remains to be fully elucidated. We previously observed that asymmetric di-methylation of histone H3 arginine 2 (H3R2me2a) counter-correlates with di- and tri- methylation of H3 lysine 4 (H3K4me2, H3K4me3) on human promoters. Here we show that the arginine methyltransferase PRMT6 catalyses H3R2 di-methylation in vitro and controls global levels of H3R2me2a in vivo. H3R2 methylation by PRMT6 was prevented by the presence of H3K4me3 on the H3 tail. Conversely, the H3R2me2a mark prevented methylation of H3K4 as well as binding to the H3 tail by an ASH2/WDR5/MLL-family methyltransferase complex. Chromatin immunoprecipitation showed that H3R2me2a was distributed within the body and at the 3′ end of human genes, regardless of their transcriptional state, whereas it was selectively and locally depleted from active promoters, coincident with the presence of H3K4me3. Hence, the mutual antagonism between H3R2 and H3K4 methylation, together with the association of MLL-family complexes with the basal transcription machinery, may contribute to the localized patterns of H3K4 tri-methylation characteristic of transcriptionally poised or active promoters in mammalian genomes.


Nature | 2007

Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response

Chiara Gorrini; Massimo Squatrito; Chiara Luise; Nelofer Syed; Daniele Perna; Landon Wark; Francesca Martinato; Domenico Sardella; Alessandro Verrecchia; Samantha Bennett; Stefano Confalonieri; Matteo Cesaroni; Francesco Marchesi; Milena Gasco; Eugenio Scanziani; Maria Capra; Sabine Mai; Paolo Nuciforo; Tim Crook; John Lough; Bruno Amati

The acetyl-transferase Tip60 might influence tumorigenesis in multiple ways. First, Tip60 is a co-regulator of transcription factors that either promote or suppress tumorigenesis, such as Myc and p53. Second, Tip60 modulates DNA-damage response (DDR) signalling, and a DDR triggered by oncogenes can counteract tumour progression. Using Eμ–myc transgenic mice that are heterozygous for a Tip60 gene (Htatip) knockout allele (hereafter denoted as Tip60+/– mice), we show that Tip60 counteracts Myc-induced lymphomagenesis in a haplo-insufficient manner and in a time window that is restricted to a pre- or early-tumoral stage. Tip60 heterozygosity severely impaired the Myc-induced DDR but caused no general DDR defect in B cells. Myc- and p53-dependent transcription were not affected, and neither were Myc-induced proliferation, activation of the ARF–p53 tumour suppressor pathway or the resulting apoptotic response. We found that the human TIP60 gene (HTATIP) is a frequent target for mono-allelic loss in human lymphomas and head-and-neck and mammary carcinomas, with concomitant reduction in mRNA levels. Immunohistochemical analysis also demonstrated loss of nuclear TIP60 staining in mammary carcinomas. These events correlated with disease grade and frequently concurred with mutation of p53. Thus, in both mouse and human, Tip60 has a haplo-insufficient tumour suppressor activity that is independent from—but not contradictory with—its role within the ARF–p53 pathway. We suggest that this is because critical levels of Tip60 are required for mounting an oncogene-induced DDR in incipient tumour cells, the failure of which might synergize with p53 mutation towards tumour progression.


PLOS ONE | 2008

Analysis of Myc-Induced Histone Modifications on Target Chromatin

Francesca Martinato; Matteo Cesaroni; Bruno Amati; Ernesto Guccione

The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10–15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression) of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks) at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP) to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1), incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.


Genome Research | 2013

Genome-wide mapping of human DNA-replication origins: Levels of transcription at ORC1 sites regulate origin selection and replication timing

Gaetano Ivan Dellino; Davide Cittaro; Rossana Piccioni; Lucilla Luzi; Stefania Banfi; Simona Segalla; Matteo Cesaroni; Ramiro Mendoza-Maldonado; Mauro Giacca; Pier Giuseppe Pelicci

We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (≥1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G(1) and the probability of firing during S.


PLOS Genetics | 2008

AML1/ETO Oncoprotein Is Directed to AML1 Binding Regions and Co-Localizes with AML1 and HEB on Its Targets

Alessandro Gardini; Matteo Cesaroni; Lucilla Luzi; Akiko Joo Okumura; Joseph R. Biggs; Simone P. Minardi; Elisa Venturini; Dong-Er Zhang; Pier Giuseppe Pelicci; Myriam Alcalay

A reciprocal translocation involving chromosomes 8 and 21 generates the AML1/ETO oncogenic transcription factor that initiates acute myeloid leukemia by recruiting co-repressor complexes to DNA. AML1/ETO interferes with the function of its wild-type counterpart, AML1, by directly targeting AML1 binding sites. However, transcriptional regulation determined by AML1/ETO probably relies on a more complex network, since the fusion protein has been shown to interact with a number of other transcription factors, in particular E-proteins, and may therefore target other sites on DNA. Genome-wide chromatin immunoprecipitation and expression profiling were exploited to identify AML1/ETO-dependent transcriptional regulation. AML1/ETO was found to co-localize with AML1, demonstrating that the fusion protein follows the binding pattern of the wild-type protein but does not function primarily by displacing it. The DNA binding profile of the E-protein HEB was grossly rearranged upon expression of AML1/ETO, and the fusion protein was found to co-localize with both AML1 and HEB on many of its regulated targets. Furthermore, the level of HEB protein was increased in both primary cells and cell lines expressing AML1/ETO. Our results suggest a major role for the functional interaction of AML1/ETO with AML1 and HEB in transcriptional regulation determined by the fusion protein.


Molecular Cell | 2014

Integrator regulates transcriptional initiation and pause release following activation.

Alessandro Gardini; David Baillat; Matteo Cesaroni; Deqing Hu; Jill M. Marinis; Eric J. Wagner; Mitchell A. Lazar; Ali Shilatifard; Ramin Shiekhattar

In unicellular organisms, initiation is the rate-limiting step in transcription; in metazoan organisms, the transition from initiation to productive elongation is also important. Here, we show that the RNA polymerase II (RNAPII)-associated multiprotein complex, Integrator, plays a critical role in both initiation and the release of paused RNAPII at immediate early genes (IEGs) following transcriptional activation by epidermal growth factor (EGF) in human cells. Integrator is recruited to the IEGs in a signal-dependent manner and is required to engage and recruit the super elongation complex (SEC) to EGF-responsive genes to allow release of paused RNAPII and productive transcription elongation.


Developmental Cell | 2009

NA-Seq: A Discovery Tool for the Analysis of Chromatin Structure and Dynamics during Differentiation

Gaetano Gargiulo; Samuel Levy; Gabriele Bucci; Mauro Romanenghi; Lorenzo Fornasari; Karen Beeson; Susanne M. D. Goldberg; Matteo Cesaroni; Marco Ballarini; Fabio Santoro; Natalie Bezman; Gianmaria Frigè; Philip D. Gregory; Michael C. Holmes; Robert L. Strausberg; Pier Giuseppe Pelicci; Fyodor D. Urnov; Saverio Minucci

It is well established that epigenetic modulation of genome accessibility in chromatin occurs during biological processes. Here we describe a method based on restriction enzymes and next-generation sequencing for identifying accessible DNA elements using a small amount of starting material, and use it to examine myeloid differentiation of primary human CD34+ cells. The accessibility of several classes of cis-regulatory elements was a predictive marker of in vivo DNA binding by transcription factors, and was associated with distinct patterns of histone posttranslational modifications. We also mapped large chromosomal domains with differential accessibility in progenitors and maturing cells. Accessibility became restricted during differentiation, correlating with a decreased number of expressed genes and loss of regulatory potential. Our data suggest that a permissive chromatin structure in multipotent cells is progressively and selectively closed during differentiation, and illustrate the use of our method for the identification of functional cis-regulatory elements.


Cancer Research | 2013

Notch1 Is Required for Kras-Induced Lung Adenocarcinoma and Controls Tumor Cell Survival via p53

Silvia Licciulli; Jacqueline L. Avila; Linda Hanlon; Scott Troutman; Matteo Cesaroni; Smitha Kota; Brian Keith; M. Celeste Simon; Ellen Puré; Freddy Radtke; Anthony J. Capobianco; Joseph L. Kissil

The Notch pathway has been implicated in a number of malignancies with different roles that are cell- and tissue-type dependent. Notch1 is a putative oncogene in non-small cell lung cancer (NSCLC) and activation of the pathway represents a negative prognostic factor. To establish the role of Notch1 in lung adenocarcinoma, we directly assessed its requirement in Kras-induced tumorigenesis in vivo using an autochthonous model of lung adenocarcinoma with concomitant expression of oncogenic Kras and deletion of Notch1. We found that Notch1 function is required for tumor initiation via suppression of p53-mediated apoptosis through the regulation of p53 stability. These findings implicate Notch1 as a critical effector in Kras-driven lung adenocarcinoma and as a regulator of p53 at a posttranslational level. Moreover, our study provides new insights to explain, at a molecular level, the correlation between Notch1 activity and poor prognosis in patients with NSCLC carrying wild-type p53. This information is critical for design and implementation of new therapeutic strategies in this cohort of patients representing 50% of NSCLC cases.


Nature Neuroscience | 2015

G9a is essential for epigenetic silencing of K+ channel genes in acute-to-chronic pain transition

Geoffroy Laumet; Judit Garriga; Shao Rui Chen; Yuhao Zhang; De Pei Li; Trevor M. Smith; Yingchun Dong; Jaroslav Jelinek; Matteo Cesaroni; Jean-Pierre Issa; Hui Lin Pan

Neuropathic pain is a debilitating clinical problem and difficult to treat. Nerve injury causes a long-lasting reduction in K+ channel expression in the dorsal root ganglion (DRG), but little is known about the epigenetic mechanisms involved. We found that nerve injury increased dimethylation of Lys9 on histone H3 (H3K9me2) at Kcna4, Kcnd2, Kcnq2 and Kcnma1 promoters but did not affect levels of DNA methylation on these genes in DRGs. Nerve injury increased activity of euchromatic histone-lysine N-methyltransferase-2 (G9a), histone deacetylases and enhancer of zeste homolog-2 (EZH2), but only G9a inhibition consistently restored K+ channel expression. Selective knockout of the gene encoding G9a in DRG neurons completely blocked K+ channel silencing and chronic pain development after nerve injury. Remarkably, RNA sequencing analysis revealed that G9a inhibition not only reactivated 40 of 42 silenced genes associated with K+ channels but also normalized 638 genes down- or upregulated by nerve injury. Thus G9a has a dominant function in transcriptional repression of K+ channels and in acute-to-chronic pain transition after nerve injury.

Collaboration


Dive into the Matteo Cesaroni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodolphe Taby

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shoudan Liang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yue Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carlos E. Bueso-Ramos

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Baillat

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Frank Neumann

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge