Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Chiara is active.

Publication


Featured researches published by Matteo Chiara.


Nucleic Acids Research | 2010

Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing

Ernesto Picardi; David S. Horner; Matteo Chiara; Riccardo Schiavon; Giorgio Valle

RNA editing is a widespread post-transcriptional molecular phenomenon that can increase proteomic diversity, by modifying the sequence of completely or partially non-functional primary transcripts, through a variety of mechanistically and evolutionarily unrelated pathways. Editing by base substitution has been investigated in both animals and plants. However, conventional strategies based on directed Sanger sequencing are time-consuming and effectively preclude genome wide identification of RNA editing and assessment of partial and tissue-specific editing sites. In contrast, the high-throughput RNA-Seq approach allows the generation of a comprehensive landscape of RNA editing at the genome level. Short reads from Solexa/Illumina GA and ABI SOLiD platforms have been used to investigate the editing pattern in mitochondria of Vitis vinifera providing significant support for 401 C-to-U conversions in coding regions and an additional 44 modifications in non-coding RNAs. Moreover, 76% of all C-to-U conversions in coding genes represent partial RNA editing events and 28% of them were shown to be significantly tissue specific. Solexa/Illumina and SOLiD platforms showed different characteristics with respect to the specific issue of large-scale editing analysis, and the combined approach presented here reduces the false positive rate of discovery of editing events.


Mitochondrion | 2015

Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity.

Anna Maria D'Erchia; Anna Atlante; Gemma Gadaleta; Giulio Pavesi; Matteo Chiara; Caterina De Virgilio; Caterina Manzari; Francesca Mastropasqua; Gian Marco Prazzoli; Ernesto Picardi; Carmela Gissi; David S. Horner; Aurelio Reyes; Elisabetta Sbisà; Apollonia Tullo

Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions. Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we found a highly significant linear correlation between mtDNA copy number estimated by qPCR and the frequency of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respiratory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in diverse cell-types, tissues and pathological conditions or in response to specific treatments.


The American Journal of Gastroenterology | 2016

Metagenomics Reveals Dysbiosis and a Potentially Pathogenic N. flavescens Strain in Duodenum of Adult Celiac Patients.

Valeria D'Argenio; Giorgio Casaburi; Vincenza Precone; Chiara Pagliuca; Roberta Colicchio; Daniela Sarnataro; Valentina Discepolo; Sangman M. Kim; Ilaria Russo; Giovanna Del Vecchio Blanco; David S. Horner; Matteo Chiara; Paola Salvatore; Giovanni Monteleone; Carolina Ciacci; Gregory J. Caporaso; Bana Jabri; F. Salvatore; Lucia Sacchetti

OBJECTIVES:Celiac disease (CD)-associated duodenal dysbiosis has not yet been clearly defined, and the mechanisms by which CD-associated dysbiosis could concur to CD development or exacerbation are unknown. In this study, we analyzed the duodenal microbiome of CD patients.METHODS:The microbiome was evaluated in duodenal biopsy samples of 20 adult patients with active CD, 6 CD patients on a gluten-free diet, and 15 controls by DNA sequencing of 16S ribosomal RNA libraries. Bacterial species were cultured, isolated and identified by mass spectrometry. Isolated bacterial species were used to infect CaCo-2 cells, and to stimulate normal duodenal explants and cultured human and murine dendritic cells (DCs). Inflammatory markers and cytokines were evaluated by immunofluorescence and ELISA, respectively.RESULTS:Proteobacteria was the most abundant and Firmicutes and Actinobacteria the least abundant phyla in the microbiome profiles of active CD patients. Members of the Neisseria genus (Betaproteobacteria class) were significantly more abundant in active CD patients than in the other two groups (P=0.03). Neisseria flavescens (CD-Nf) was the most abundant Neisseria species in active CD duodenum. Whole-genome sequencing of CD-Nf and control-Nf showed genetic diversity of the iron acquisition systems and of some hemoglobin-related genes. CD-Nf was able to escape the lysosomal compartment in CaCo-2 cells and to induce an inflammatory response in DCs and in ex-vivo mucosal explants.CONCLUSIONS:Marked dysbiosis and an abundance of a peculiar CD-Nf strain characterize the duodenal microbiome in active CD patients thus suggesting that the CD-associated microbiota could contribute to the many inflammatory signals in this disorder.


PLOS ONE | 2017

Role of the long non-coding RNA PVT1 in the dysregulation of the ceRNA-ceRNA network in human breast cancer.

Federica Conte; Giulia Fiscon; Matteo Chiara; Teresa Colombo; Lorenzo Farina; Paola Paci; Turgay Unver

Recent findings have identified competing endogenous RNAs (ceRNAs) as the drivers in many disease conditions, including cancers. The ceRNAs indirectly regulate each other by reducing the amount of microRNAs (miRNAs) available to target messenger RNAs (mRNAs). The ceRNA interactions mediated by miRNAs are modulated by a titration mechanism, i.e. large changes in the ceRNA expression levels either overcome, or relieve, the miRNA repression on competing RNAs; similarly, a very large miRNA overexpression may abolish competition. The ceRNAs are also called miRNA “decoys” or miRNA “sponges” and encompass different RNAs competing with each other to attract miRNAs for interactions: mRNA, long non-coding RNAs (lncRNAs), pseudogenes, or circular RNAs. Recently, we developed a computational method for identifying ceRNA-ceRNA interactions in breast invasive carcinoma. We were interested in unveiling which lncRNAs could exert the ceRNA activity. We found a drastic rewiring in the cross-talks between ceRNAs from the physiological to the pathological condition. The main actor of this dysregulated lncRNA-associated ceRNA network was the lncRNA PVT1, which revealed a net biding preference towards the miR-200 family members in normal breast tissues. Despite its up-regulation in breast cancer tissues, mimicked by the miR-200 family members, PVT1 stops working as ceRNA in the cancerous state. The specific conditions required for a ceRNA landscape to occur are still far from being determined. Here, we emphasized the importance of the relative concentration of the ceRNAs, and their related miRNAs. In particular, we focused on the withdrawal in breast cancer tissues of the PVT1 ceRNA activity and performed a gene expression and sequence analysis of its multiple isoforms. We found that the PVT1 isoform harbouring the binding site for a representative miRNA of the miR-200 family shows a drastic decrease in its relative concentration with respect to the miRNA abundance in breast cancer tissues, providing a plausibility argument to the breakdown of the sponge program orchestrated by the oncogene PVT1.


Plant Journal | 2014

Gene coexpression patterns during early development of the native Arabidopsis reproductive meristem: novel candidate developmental regulators and patterns of functional redundancy

Otho Mantegazza; Veronica Gregis; Matteo Chiara; Caterina Selva; Giulia Leo; David S. Horner; Martin M. Kater

During very early stages of flower development in Arabidopsis thaliana, a series of key decisions are taken. Indeed, the position and the basic patterning of new flowers are determined in less than 4 days. Given that the scientific literature provides hard evidence for the function of only 10% of A. thaliana genes, we hypothesized that although many essential genes have already been identified, many poorly characterized genes are likely to be involved in floral patterning. In the current study, we use high-throughput sequencing to describe the transcriptome of the native inflorescence meristem, the floral meristem and the new flower immediately after the start of organ differentiation. We provide evidence that our experimental system is reliable and less affected by experimental artefacts than a widely used floral induction system. Furthermore, we show how these data can be used to identify candidate genes for functional studies, and to generate hypotheses of functional redundancies and regulatory interactions.


Nucleic Acids Research | 2012

SVM2: an improved paired-end-based tool for the detection of small genomic structural variations using high-throughput single-genome resequencing data

Matteo Chiara; David Horner

Several bioinformatics methods have been proposed for the detection and characterization of genomic structural variation (SV) from ultra high-throughput genome resequencing data. Recent surveys show that comprehensive detection of SV events of different types between an individual resequenced genome and a reference sequence is best achieved through the combination of methods based on different principles (split mapping, reassembly, read depth, insert size, etc.). The improvement of individual predictors is thus an important objective. In this study, we propose a new method that combines deviations from expected library insert sizes and additional information from local patterns of read mapping and uses supervised learning to predict the position and nature of structural variants. We show that our approach provides greatly increased sensitivity with respect to other tools based on paired end read mapping at no cost in specificity, and it makes reliable predictions of very short insertions and deletions in repetitive and low-complexity genomic contexts that can confound tools based on split mapping of reads.


Genome Biology and Evolution | 2015

Genome Sequencing of Multiple Isolates Highlights Subtelomeric Genomic Diversity within Fusarium fujikuroi

Matteo Chiara; Francesca Fanelli; Giuseppina Mulè; Antonio Logrieco; John F. Leslie; David S. Horner; Christopher Toomajian

Abstract Comparisons of draft genome sequences of three geographically distinct isolates of Fusarium fujikuroi with two recently published genome sequences from the same species suggest diverse profiles of secondary metabolite production within F. fujikuroi. Species- and lineage-specific genes, many of which appear to exhibit expression profiles that are consistent with roles in host–pathogen interactions and adaptation to environmental changes, are concentrated in subtelomeric regions. These genomic compartments also exhibit distinct gene densities and compositional characteristics with respect to other genomic partitions, and likely play a role in the generation of molecular diversity. Our data provide additional evidence that gene duplication, divergence, and differential loss play important roles in F. fujikuroi genome evolution and suggest that hundreds of lineage-specific genes might have been acquired through horizontal gene transfer.


The Plant Cell | 2017

CONSTANS Imparts DNA Sequence Specificity to the Histone Fold NF-YB/NF-YC Dimer

Nerina Gnesutta; Roderick W. Kumimoto; Swadhin Swain; Matteo Chiara; Chamindika L. Siriwardana; David S. Horner; Ben F. Holt; Roberto Mantovani

CONSTANS forms a trimeric complex with At-NF-YB2/NF-YC3 to efficiently bind the CORE element: the CCT provides trimerization and DNA-binding, akin to NF-YA but divergent in sequence selectivity. Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor that binds CCAAT elements. The NF-Y trimer is composed of a Histone Fold Domain (HFD) dimer (NF-YB/NF-YC) and NF-YA, which confers DNA sequence specificity. NF-YA shares a conserved domain with the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) proteins. We show that CONSTANS (CO/B-BOX PROTEIN1 BBX1), a master flowering regulator, forms a trimer with Arabidopsis thaliana NF-YB2/NF-YC3 to efficiently bind the CORE element of the FLOWERING LOCUS T promoter. We term this complex NF-CO. Using saturation mutagenesis, electrophoretic mobility shift assays, and RNA-sequencing profiling of co, nf-yb, and nf-yc mutants, we identify CCACA elements as the core NF-CO binding site. CO physically interacts with the same HFD surface required for NF-YA association, as determined by mutations in NF-YB2 and NF-YC9, and tested in vitro and in vivo. The co-7 mutation in the CCT domain, corresponding to an NF-YA arginine directly involved in CCAAT recognition, abolishes NF-CO binding to DNA. In summary, a unifying molecular mechanism of CO function relates it to the NF-YA paradigm, as part of a trimeric complex imparting sequence specificity to HFD/DNA interactions. It is likely that members of the large CCT family participate in similar complexes with At-NF-YB and At-NF-YC, broadening HFD combinatorial possibilities in terms of trimerization, DNA binding specificities, and transcriptional regulation.


Genome Biology and Evolution | 2015

Comparative Genomics of Listeria Sensu Lato: Genus-Wide Differences in Evolutionary Dynamics and the Progressive Gain of Complex, Potentially Pathogenicity-Related Traits through Lateral Gene Transfer

Matteo Chiara; Marta Caruso; Anna Maria D’Erchia; Caterina Manzari; Rosa Fraccalvieri; Elisa Goffredo; Laura Latorre; Angela Miccolupo; Iolanda Padalino; Gianfranco Santagada; Doriano Chiocco; David S. Horner; Antonio Parisi

Historically, genome-wide and molecular characterization of the genus Listeria has concentrated on the important human pathogen Listeria monocytogenes and a small number of closely related species, together termed Listeria sensu strictu. More recently, a number of genome sequences for more basal, and nonpathogenic, members of the Listeria genus have become available, facilitating a wider perspective on the evolution of pathogenicity and genome level evolutionary dynamics within the entire genus (termed Listeria sensu lato). Here, we have sequenced the genomes of additional Listeria fleischmannii and Listeria newyorkensis isolates and explored the dynamics of genome evolution in Listeria sensu lato. Our analyses suggest that acquisition of genetic material through gene duplication and divergence as well as through lateral gene transfer (mostly from outside Listeria) is widespread throughout the genus. Novel genetic material is apparently subject to rapid turnover. Multiple lines of evidence point to significant differences in evolutionary dynamics between the most basal Listeria subclade and all other congeners, including both sensu strictu and other sensu lato isolates. Strikingly, these differences are likely attributable to stochastic, population-level processes and contribute to observed variation in genome size across the genus. Notably, our analyses indicate that the common ancestor of Listeria sensu lato lacked flagella, which were acquired by lateral gene transfer by a common ancestor of Listeria grayi and Listeria sensu strictu, whereas a recently functionally characterized pathogenicity island, responsible for the capacity to produce cobalamin and utilize ethanolamine/propane-2-diol, was acquired in an ancestor of Listeria sensu strictu.


PLOS ONE | 2013

De novo assembly of the transcriptome of the non-model plant Streptocarpus rexii employing a novel heuristic to recover locus-specific transcript clusters.

Matteo Chiara; David S. Horner; Alberto Spada

De novo transcriptome characterization from Next Generation Sequencing data has become an important approach in the study of non-model plants. Despite notable advances in the assembly of short reads, the clustering of transcripts into unigene-like (locus-specific) clusters remains a somewhat neglected subject. Indeed, closely related paralogous transcripts are often merged into single clusters by current approaches. Here, a novel heuristic method for locus-specific clustering is compared to that implemented in the de novo assembler Oases, using the same initial transcript collections, derived from Arabidopsis thaliana and the developmental model Streptocarpus rexii. We show that the proposed approach improves cluster specificity in the A. thaliana dataset for which the reference genome is available. Furthermore, for the S. rexii data our filtered transcript collection matches a larger number of distinct annotated loci in reference genomes than the Oases set, while containing a reduced overall number of loci. A detailed discussion of advantages and limitations of our approach in processing de novo transcriptome reconstructions is presented. The proposed method should be widely applicable to other organisms, irrespective of the transcript assembly method employed. The S. rexii transcriptome is available as a sophisticated and augmented publicly available online database.

Collaboration


Dive into the Matteo Chiara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Horner

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge