Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Cococcioni is active.

Publication


Featured researches published by Matteo Cococcioni.


Journal of Physics: Condensed Matter | 2009

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

Paolo Giannozzi; Stefano Baroni; Nicola Bonini; Matteo Calandra; Roberto Car; Carlo Cavazzoni; Davide Ceresoli; Guido L. Chiarotti; Matteo Cococcioni; Ismaila Dabo; Andrea Dal Corso; Stefano de Gironcoli; Stefano Fabris; Guido Fratesi; Ralph Gebauer; Uwe Gerstmann; Christos Gougoussis; Anton Kokalj; Michele Lazzeri; Layla Martin-Samos; Nicola Marzari; Francesco Mauri; Riccardo Mazzarello; Stefano Paolini; Alfredo Pasquarello; Lorenzo Paulatto; Carlo Sbraccia; Sandro Scandolo; Gabriele Sclauzero; Ari P. Seitsonen

QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.


Physical Review B | 2004

First-principles prediction of redox potentials in transition-metal compounds with LDA+ U

Fei Zhou; Matteo Cococcioni; Chris A. Marianetti; Dane Morgan; Gerbrand Ceder

First-principles calculations within the local density approximation (LDA) or generalized gradient approximation (GGA), though very successful, are known to underestimate redox potentials, such as those at which lithium intercalates in transition metal compounds. We argue that this inaccuracy is related to the lack of cancellation of electron self-interaction errors in LDA/GGA and can be improved by using the DFT+U method with a self-consistent evaluation of the U parameter. We show that, using this approach, the experimental lithium intercalation voltages of a number of transition metal compounds, including the olivine Li xMPO4 (M = Mn, Fe Co, Ni), layered LixMO2 (x = Co, Ni) and spinel-like LixM2O4 (M = Mn, Co), can be reproduced accurately.


Science | 2011

Dispersible exfoliated zeolite nanosheets and their application as a selective membrane

Kumar Varoon; Xueyi Zhang; Bahman Elyassi; Damien D. Brewer; Melissa Gettel; Sandeep Kumar; J. Alex Lee; Sudeep Maheshwari; Anudha Mittal; Chun Yi Sung; Matteo Cococcioni; Lorraine F. Francis; Alon V. McCormick; K. Andre Mkhoyan; Michael Tsapatsis

Thin zeolite films prepared through a polymer exfoliation method were used as selective membranes. Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.


Physical Review Letters | 2006

Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach.

Heather J. Kulik; Matteo Cococcioni; Damián A. Scherlis; Nicola Marzari

Transition-metal centers are the active sites for a broad variety of biological and inorganic chemical reactions. Notwithstanding this central importance, density-functional theory calculations based on generalized-gradient approximations often fail to describe energetics, multiplet structures, reaction barriers, and geometries around the active sites. We suggest here an alternative approach, derived from the Hubbard U correction to solid-state problems, that provides an excellent agreement with correlated-electron quantum chemistry calculations in test cases that range from the ground state of Fe2 and Fe2- to the addition elimination of molecular hydrogen on FeO+. The Hubbard U is determined with a novel self-consistent procedure based on a linear-response approach.


Journal of Applied Physics | 2012

Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments

Ankur Khare; Burak Himmetoglu; Melissa Johnson; David J. Norris; Matteo Cococcioni; Eray S. Aydil

The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.


International Journal of Quantum Chemistry | 2014

Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems

Burak Himmetoglu; A. Floris; Stefano de Gironcoli; Matteo Cococcioni

The aim of this review article is to assess the descriptive capabilities of the Hubbard-rooted LDA+U method and to clarify the conditions under which it can be expected to be most predictive. The article illustrates the theoretical foundation of LDA+U and prototypical applications to the study of correlated materials, discusses the most relevant approximations used in its formulation, and makes a comparison with other approaches also developed for similar purposes. Open “issues” of the method are also discussed, including the calculation of the electronic couplings (the Hubbard U), the precise expression of the corrective functional and the possibility to use LDA+U for other classes of materials. The second part of the article presents recent extensions to the method and illustrates the significant improvements they have obtained in the description of several classes of different systems. The conclusive section finally discusses possible future developments of LDA+U to further enlarge its predictive power and its range of applicability.


Physical Review Letters | 2011

Spin-State Crossover and Hyperfine Interactions of Ferric Iron in MgSiO3 Perovskite

Han Hsu; Peter Blaha; Matteo Cococcioni; Renata M. Wentzcovitch

Using density functional theory plus Hubbard U calculations, we show that the ground state of (Mg,Fe)(Si,Fe)O(3) perovskite, the major mineral phase in Earths lower mantle, has high-spin ferric iron (S=5/2) at both dodecahedral (A) and octahedral (B) sites. With increasing pressure, the B-site iron undergoes a spin-state crossover to the low-spin state (S=1/2) between 40 and 70 GPa, while the A-site iron remains in the high-spin state. This B-site spin-state crossover is accompanied by a noticeable volume reduction and an increase in quadrupole splitting, consistent with recent x-ray diffraction and Mössbauer spectroscopy measurements. The anomalous volume reduction leads to a significant softening in bulk modulus during the crossover, suggesting a possible source of seismic-velocity anomalies in the lower mantle.


Journal of Physics: Condensed Matter | 2017

Advanced capabilities for materials modelling with Quantum ESPRESSO

Paolo Giannozzi; O. Andreussi; T. Brumme; O. Bunau; M. Buongiorno Nardelli; Matteo Calandra; Roberto Car; Carlo Cavazzoni; D. Ceresoli; Matteo Cococcioni; Nicola Colonna; I. Carnimeo; A. Dal Corso; S. de Gironcoli; P. Delugas; Robert A. DiStasio; Andrea Ferretti; A. Floris; Guido Fratesi; Giorgia Fugallo; Ralph Gebauer; Uwe Gerstmann; Feliciano Giustino; T. Gorni; Junteng Jia; M. Kawamura; Hsin-Yu Ko; Anton Kokalj; E. Küçükbenli; Michele Lazzeri

Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.


Journal of Chemical Physics | 2006

A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

Damián A. Scherlis; Jean-Luc Fattebert; Francois Gygi; Matteo Cococcioni; Nicola Marzari

The electrostatic continuum solvent model developed by [Fattebert and Gygi J. Comput. Chem. 23, 662 (2002); Int. J. Quantum Chem. 93, 139 (2003)] is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. Our model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. We apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.


Physical Review B | 2004

Phase separation in Li x FePO 4 induced by correlation effects

Fei Zhou; Chris A. Marianetti; Matteo Cococcioni; Dane Morgan; G. Ceder

We report on a significant failure of LDA and GGA to reproduce the phase stability and thermodynamics of mixed-valence Li

Collaboration


Dive into the Matteo Cococcioni's collaboration.

Top Co-Authors

Avatar

Nicola Marzari

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ismaila Dabo

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gerbrand Ceder

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrea Ferretti

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patrick H.-L. Sit

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Fei Zhou

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Floris

King's College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge